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Abstract

In the economic literature, a vivid discussion concerning the analysis of jointness
of variables within Bayesian Model Averaging (BMA) regressions took place. Several
bivariate measures, like the odds ratios (Doppelhofer and Weeks, 2009a) or the
Jaccard index (Ley and Steel, 2007) have been proposed to analyze the joint inclusion
of covariates in such a setting. This paper uses Dirichlet Process priors to examine
the jointness of sampled models within a BMA framework and tries to identify
common model specifications. Furthermore we show how sensitive prior choices in
the BMA procedure are with respect to this clustering of sampled models.
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1 Introduction

In the economic literature (see Doppelhofer and Weeks, 2009a; Strachan, 2009; Dop-
pelhofer and Weeks, 2009b) a vivid discussion took place how to correctly analyze the
(dis)jointness of variables in Bayesian Model Averaging (BMA).

Common measures of importance focus on the frequency at which a variable is in-
cluded in the sampled models (Posterior Inclusion Probabilities). However, this approach
neglects the interdependencies of variables and the fact that different clusters of models
can prefer varying sets of covariates which are frequently included. Such an analysis
would provide a deeper understanding of the visited models, in order to provide guid-
ance on questions concerning supplementary or complementary effects between variable
sets.

Still there is no consent in the literature regarding the right measure of jointness.
To the best of our knowledge Doppelhofer and Weeks (2009a) (henceforth DW ) were
the first who introduced a new measure which allows to analyze the jointness among
explanatory variables in such a setting.
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To formalize a measure of dependency between the explanatories xi and xj (hence-
forth i and j) DW defined their jointness statistic as the cross product ratio, i.e.,

Jij = ln

[
p(i ∩ j)

p(̄i ∩ j)

p(̄i ∩ j̄)

p(i ∩ j̄)

]
(1)

In the data mining literature this measure is know as Odds ratio α (Tan et al., 2004).
Ley and Steel (2009) criticized this measure and proposed four criteria an appropriate

measure of jointness should fulfill:

Interpretability Any jointness measure should have either a clear meaning or should
be statistically well founded.

Calibration Values of jointness should be calibrated against some predefined scale.

Extreme Jointness Situations were two variables appear always together should result
in maximum jointness.

Support A jointness measure should always be defined whenever at least one variable
is included.

More recently Glass (2013) discussed properties and advantages of different associa-
tion rules such as null–invariance, monotonicity and symmetry requirements. However
the literature on association rules disagrees on the importance of these different prop-
erties for association rules (and jointness measures). Therefore these attributes have to
be evaluated in a systematic way and their applicability for model comparisons has to
be discussed in detail.

In general, inspecting the ci estimates for the visited modles allows to gather a more
general picture of the sampled model space. Moreover it allows us to identify similarities
between the sampled models. Therefore we are able to analyze jointness more extensively
compared to the bivariate case.

For such an analysis the three key properties defined by Piatetsky-Shapiro (1991)
should be satisfied, yet there are numerous extensions to these basic characteristics. An
overview is provided by Tan et al. (2004).

2 Jointness of Dirichlet Clustered Models

In order to discuss the jointness of variables and determine a more detailed relationship
between the variables and the sampling behavior of the MCMC methods, we make use
of Dirichlet Process Clustering (DPC).

The idea of utilizing clustering to profile patterns in data (here similar models) is
not new (see Molitor et al., 2010). Compared to the methods used in literature, the
advantages of the Dirichlet clustering approach are manifold: First, the DPC extends
the bivariate comparison to a more general picture of similar models. Furthermore the
Bayesian clustering approach allows the number of groups to vary and accordingly can
uncover subgroups and examines their association with an outcome of interest.

Most importantly, clustering facilitates interpretation of jointness effects, which can
be ambiguous for the whole model space. In this setting jointness measures can not only
be applied to single clusters but also to the global model space. The estimated clusters
will however capture most of the jointness effect between groups of models, so that their
inherent structure can be addressed more directly using the proposed jointness measures.
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Formally, we consider models of the form

yi|c, ϕ ∼ F (ϕ(ci))

ci|p ∼ Discrete(p1, . . . , pK)

ϕ(c) ∼ G0

p1, . . . , pK ∼ Dirichlet(α/K, . . . , α/K).

ci indicates latent class of observation yi and K the number of components (clusters)
which is estimated within the MCMC procedure.
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