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Abstract

Quantile regression models for count data have so far received little attention.
The main quantile regression technique for count data involves adding uniform ran-
dom noise, thus overcoming the problem that the conditional quantile function is not
a continuous function of the parameters of interest. This method has the drawback
that, for small values of the response variable Y, the added noise can have a large
influence on the estimated quantiles. In addition, quantile regression can lead to
“crossing” quantiles. We propose a Bayesian Dirichlet process (DP)-based approach
that is based on an adaptive DP mixture of COM-Poisson regression models and
determines the quantiles by estimating the density of the data, thus eliminating all
the aforementioned problems.
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1 Introduction

Quantile regression was introduced as a nonparametric method for modelling a variable
of interest as a function of covariates [3]. By estimating the conditional quantiles rather
than the mean, it gives a more complete description of the conditional distribution of
the response variable than least squares regression.

The problem with applying quantile regression to count data is that the cumulative
distribution function of the response variable is not continuous, resulting in quantiles that
are not continuous, which can not be expressed as a continuous function of the covariates.
One way to overcome this problem is by adding uniform random noise (“jittering”) to
the counts [4].

We propose an adaptive Dirichlet process mixture approach which estimates the
conditional density of the data. The approach is based on an adaptive Dirichlet Process
mixture (DPM) of COM-Poisson regression models.
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2 COM-Poisson distribution

The COM-Poisson distribution [1, 8] is a two-parameter generalisation of the Poisson
distribution that allows for different levels of dispersion. Its probability mass function is

P (Y = y|µ, ν) =

(
µy

y!

)ν 1

Z(µ, ν)
where Z(µ, ν) =

∞∑
j=0

(
µj

j!

)ν
and y = 0, 1, 2, . . . (1)

where
E[Y ] ≈ µ, V[Y ] ≈ µ

ν
(2)

One can obtain a point mass by letting the variance parameter ν tend to infinity.
Thus one can show that mixtures of COM-Poisson distributions can provide an arbi-
trarily precise approximation to any discrete distribution with support N0, which is why
COM-Poisson distributions are used by our method.

A regression model can be defined based on (1),

logµi = xi
ᵀβ (3)

log νi = xi
ᵀc (4)

It can be seen, in the next subsection, that the calculation of the normalisation
constant of this distribution is redundant.

2.1 Exchange algorithm

Any probability density function p(y|θ) can be written as

p(y|θ) =
qθ(y)

Z(θ)
(5)

where qθ(y) is the unnormalised density and the normalising constant Z(θ) =
∫
p(y, θ) dy

is unknown. In this case the Metropolis-Hastings acceptance ratio is

α = min

(
1,
qθ∗(y)π(θ∗)Z(θ)h(θ|θ∗)
qθ(y)π(θ)Z(θ∗)h(θ∗|θ)

)
(6)

where π(θ) is the prior of θ. The ratio in (6) involves computing unknown normalis-
ing constants. Introducing auxiliary variables θ∗, y∗ and sampling from an augmented
distribution

π(θ∗, y∗, θ|y) ∝ p(y|θ)π(θ)p(y∗|θ∗)h(θ∗|θ) (7)

results in

α = min

(
1,
p(y|θ∗)π(θ∗)p(y∗|θ)h(θ|θ∗)
p(y|θ)π(θ)p(y∗|θ∗)h(θ∗|θ)

)
(8)

= min

(
1,
qθ(y

∗)π(θ∗)h(θ|θ∗)qθ∗(y)Z(θ)Z(θ∗)

qθ(y)π(θ)h(θ∗|θ)qθ∗(y∗)Z(θ∗)Z(θ)

)
(9)

= min

(
1,
qθ(y

∗)π(θ∗)qθ∗(y)

qθ(y)π(θ)qθ∗(y∗)

)
(10)

where the normalising constants cancel out and h() is a symmetric distribution [6, 5].
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3 Bayesian density regression

Density regression allows flexible modelling of the response variable Y given the covari-
ates x = (x1, . . . , xp)

′. Features of the conditional distribution of the response variable,
vary with x, so, depending on the predictor values, these features can change in a
different way than the population mean. Bayesian methods for density regression are
considered in [2] where the conditional distribution of the response variable is expressed
as a mixture of regression models where the mixing weights vary with covariates.

This paper focuses on the following mixture:

f(yi|xi) =

∫
f(yi|xi, φi)Gxi(dφi) where f(yi|xi, φi) = COM-P(yi; exp(x′ibi), exp(x′ici))

(11)
the conditional density of the response variable is expressed as a mixture of COM-Poisson
regression models with φi = (bi, ci) and Gxi is an unknown mixture distribution that
depends on the location of xi.

3.1 MCMC algorithm

The MCMC algorithm alternates between:

• updating the allocation parameter, assigning each observation either to a new
mixture component or to an already existing one

• and updating the parameters (µ, ν) for each mixture component.

Unlike the model in [2], there is no closed form expression for the posterior distribu-
tion and approximation of the probability of allocating observations to a new cluster is
difficult.

We overcome this problem by bridging: i) an MCMC algorithm for sampling from
the posterior distribution of a Dirichlet process model, with a non-conjugate prior, found
in [7]; ii) the MCMC algorithm found in [2]; and iii) a variation of the MCMC exchange
algorithm.

4 Simulations

We consider two simulated datasets to compare the proposed method to the “jittering”
method. These are

Yi|Xi = xi ∼ Binomial(10, 0.3xi) (12)

Yi|Xi = xi ∼ 0.4Pois(exp(1 + xi)) + 0.2Binomial(10, 1− xi) + 0.4Geom(0.2) (13)

where xi ∼ Unif(0, 1). Table (1) shows the absolute mean errors, E[|qp − q̂p|], where
qp is the true conditional quantile when x = p and q̂p is the estimated conditional
quantile. The new method outperforms the “jittering” method and in almost all cases
the “jittering” method leads to crossing quantiles (except when n = 500).
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Method Number of Observations

Binomial Mixture
20 100 500 20 100 500

Density regression 0.5576 0.2820 0.2421 0.7435 0.5833 0.3589
Jittering (linear) 0.5256 0.8461 0.4765 1.1923 0.6666 0.4294
Jittering (splines) 0.7820 0.5128 0.3020 1.9487 0.8269 0.3910

Table 1: Mean absolute error obtained using the different density/quantile regression
methods.
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