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Abstract

We introduce a novel class of Simultaneous Graphical Dynamic Linear Models
(SGDLMsS) for learning and prediction of increasingly high-dimensional time series.
The multivariate time series are decoupled into a parallel set of univariate dynamic
linear models using a Variational Bayes strategy. At each time point, parallel se-
quential updating and forecasting for each series applies. Importance sampling re-
covers the exact multivariate posterior. Model evolution to the next time point
uses a Bayes’ strategy to decouple and proceed. Our GPU implementation, using
C++/CUDA, exploits massive parallelization for decoupled analyses and simula-
tion. The overall modeling and computational strategy is enormously scalable with
time series dimension. We demonstrate that this allows for an involved, real-time
Bayesian analysis of a 400-dimensional daily stock return time series in portfolio
investment studies.

Keywords: high-dimensional data, time series; forecasting; variational bayes;
importance sampling

1 Introduction

The dynamic linear model (DLM) is an established Bayesian time series model [10,
7]. The model’s versatility makes it a popular choice in many fields such as finance,
econometrics, biology and genomics.

We present the simultaneous graphical dynamic linear model (SGDLM) as a sparser
multivariate extension of the univariate DLM than the standard multivariate DLM,
which uses a variance-discounting Wishart prior. The number of parameters of the
standard DLM increase quadratically with the number of series. We hope to make
forecasting of high-dimensional time series more robust by reducing the number of pa-
rameters dramatically. Previous attempts to sparser versions of the multivariate DLM
include [11, 1, 3, 8]. Furthermore, the SGDLM allows forward filtering in parallel, thus
enabling efficient massively parallel implementations for GPUs.

We provide a GPU implementation in C++/CUDA along with the presentation of
the new model. GPU computation is ideally suited for parallel analysis, and the overall
modeling and computational strategy is enormously scalable with time series dimension
as a result [6, 9, 4].



2 Model Specification

Let yr = (y1t,---,Yme)’, t = 1 : T be an m-variate time series whose time ¢ observation
y: follows an m-variate normal distribution N(Ayp,, ). The series j = 1 : m are
modeled as simultaneously coupled univariate dynamic linear models (DLMs; [10, 7]):

Yjt = X}tﬁbjt + ’Y;'tysp(j),t + Vjt

We write sp(j) C {1 :m}\{j} for the j-th parental set, which denotes the simultaneous
parents of the j-th series; vj; is the vector of dynamic regression coefficients ~;x;, h €
sp(j), with dimension pj, = |sp(j)|; xj: € RPs¢ is a known column vector of predictors
or constants, with corresponding dynamic regression coefficients in the column state
vector ¢j; € RPi¢. The observation noise terms v;; ~ N (0, )\j_tl) are independent across
series and over time; vy = (Vig,...,Umt) ~ N(O,At_l) with precision matrix A; =
diag(A1¢, ..., Ame). Weset v;ne = 0 for each b € sp(j) and collect the effective coefficients
;¢ along with the implicit zero values in the matrix

0 V1,2,t 71,3,¢ te Y1,m,t
V2,1, 0 V2,3t e Y2,m,t
Ft — . . . .
Ym-11¢ - VYm—1,m—2t 0 Ym—1,m,t
Ym,1,t TYm,2,t s Ym,m—1,t 0

Sparsity can be achieved in that sp(j) may be a few, or no, elements. A sparse model
has a sparse coefficient matrix I's.

Writing p, = (pit, - -5 pome)’ With gy = X;-tgf)jt, Ay = (I-Ty) ! € R™™ and
Q; = (I — F;)At(I — Ft) S Rmxm’ we obtain

(I =Ty = py + v, (1)
Ve~ N(Apy, @), (2)
The across-series dependence characteristics of the covariance matrix ¥; = Q7!

arise from the pattern of the simultaneous parents in I';. When the entries of I'; are
reduced to being either zero or non-zero, it can be interpreted as the adjacency matrix of
an equivalent graphical model, hence the term “simultaneous graphical dynamic linear
model” (SGDLM).

3 Forward Filtering

Initial Prior We choose independent normal-inverse gamma priors to reflect the initial
information Dy; these are conjugate for univariate DLMs [10]:

p(©1,A11D0) = [] N(@jilaj, Rji/(ciiri)) Gjilrj/2,rjici/2), (3)

j=1lm

with prior parameters aj; € R, Rj; € RPi*Pi, rj; > 0 and ¢;1 > 0.



Posterior at Time ¢ The multivariate joint posterior of ®; and A; given information
Dy has density

P(On, Ay|Dy) o T=Ty| J] N(Ojilmye, Cief(sjidse)) G(Njelnje/2,njusse/2).  (4)

j=1lm

The parameters mj; € RPi, Cj; € RPi*Pi nj > 0 and s;; > 0 are obtained by executing
the posterior step independently within each series j =1 : m [10]:

o Qjt =cj + F;'tRjtthQ

o Aji=Ry;iFji/Qji;

o ¢t = yjt — Fla;

e nj =71+ 1;

o sjt = cj(rje +€3/Qji) [ (rje + 1);
e mj; = aj; + Ajiej;

o Cji = (Rjt — A;i A}, Qjt)sji/ cji-

The marginal posteriors are tied together, or “recoupled”, only by the determinant of
(I — T;) as corrective factor of the posterior density (Eq. 4). Observing this detail is
crucial to developing a mostly parallel computational implementation of the posterior
estimation step.

Step-Ahead Prior at Time ¢t To obtain an analytically tractable result, we assume
that the posterior parameters (®;, A¢|D;) are decoupled to follow an independent normal
inverse gamma distribution with parameters mj;, Cj¢, nj; and s

p(®n, AD) ~ [ N(Ojele, Cje/(jehje)) G(Njelfje/2,7e551/2)- (5)

j=1lm

Then the one step ahead prior distribution (@441, A¢y1|D;) follows as a normal-inverse
gamma distribution with parameters a;; 1 € RP7, Rj; 11 € RPI*Pi 1, q and ¢4 that
is independent across the series j =1 :m:

P(Orr1, Ap11|Dy)
= [ NOjialajimn Ryeir/(ciimdim))GN i lryesn /2,75 041¢5041/2) (6)

j=1lm
The parameters are
o 71 = BN
® Cjt+l = gjt%
° a;11 =Gjprimy;

o Rjti1 = Gj,t+1Aj(~3th;G;’t+1; this implicitly defines W ;111.



4 Variational Bayes Posterior Decoupling and Forecasting

The time evolution step (Section 3) requires the posterior distribution of the parameters
O, and A; be independent across the series 7 = 1 : m. Since this is not the case for the
exact posterior distribution (Eq. 4), we adopt a Variational Bayes approximation.

4.1 Variational Bayes Decoupling of the Posterior

A Variational Bayes approach estimates the parameters of a pre-specified posterior dis-
tribution class to best approximate the true, intractably complicated exact posterior
distribution [2].

The exact posterior distribution of ®; and A, is given in Equation 4. We expect the
value of the determinant |[I—T'| not to spread far from unity, given the sparse matrix I'.
As a result, the exact posterior distribution will be close to an across series-independent
normal inverse gamma distribution,

p(©4, ADy) = p(O1, Ar) = [ N(Ojulfje, Cir/(5jedin)) GNjelije/2, 71155e/2).  (T)

j=1lm

The parameters mj;; € RP/, (~3jt € RPi*Pi nj > 0 and s;; > 0 are set to minimize
the Kullback-Leibler divergence from the decoupled Variational Bayes posterior to the
true multivariate posterior:

- _E()\jteﬁ).
* T TR

Vi = E(\je(8j0 — ) (0 — je)');

Qjt = E(\ju(050 — 1;0) V! (650 — 1iaje));

fije such that log(fije + pj — Qi) — ¥(Mje/2) — (pj — Qye)/Tje — log(2E(\jr)) +
E(log A\ji) = 0;

o 5. = Mt tpi— Qe
! niE(Nj)

® C]’t = Sjtht-

The parameters depend on some moments of the exact posterior. We will evaluate these
expectations using importance sampling [5].

The overall Kullback-Leibler divergence of the approximation can be shown to be
an upper bound for the Kullback-Leibler divergence of any series. Each series’ approx-
imation will be sufficiently good as long as the quality of the overall approximation is
sufficient.

4.2 One Step Ahead Forecast at Time ¢

The observation equation (Eq. 1) can be written as

yir1 = (T = Tep1) N pypq +vig)- (8)

There is no closed-form analytical expression of the forecast distribution available, given
the complex nature of the distribution of (I-T;,1)~!. However, the forecast distribution
can be easily evaluated by simulation.



5 Real Data Example: Forecasting of S&P 500 Stocks

We run sequential learning and day ahead-forecasting on 400 members of the S&P 500.
We investigate the effect of our Variational Bayes strategy on the forecasting performance
of the SGDLM. The analysis is based on 2044 daily observations from January 2006
through October 2013.

We evaluate the forecast performance by the distribution quantiles of the realized
returns of their respective forecast distributions (Figure 1). Ideally, the distribution of
the quantiles should be uniform.
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Figure 1: Distribution of the quantiles of the realizations in the t+1 forecast distributions
across all series 7 = 1 : 400 and all 2044 observations.

It is evident from Figure 1 that the Variational Bayes step improves forecasting
performance significantly. An analysis of the coverage properties of forecast intervals
confirms this verdict on the level of individual stocks (Table 1).



Forecast interval | 99.0%  95.0%  90.0% 80.0% 50.0% 20.0%  10.0%
Across All Series

Coverage w/ VB 98.6% 95.9% 92.8% 85.8% 59.8% 27.2% 14.3%
Coverage w/o VB | 99.2%  97.9% 96.3% 92.9% 76.7% 41.6% 23.2%
Apple Inc

Coverage w/ VB 98.4% 95.8% 92.3% 86.3% 60.1% 25.9% 13.4%
Coverage w/o VB | 99.3%  98.0% 96.2% 92.8% 74.8% 39.6% 19.7%
Bank of America Corp

Coverage w/ VB 98.4% 95.8% 92.8% 86.0% 61.4% 27.3% 14.0%
Coverage w/o VB | 98.4%  96.7% 95.1% 92.1% 80.2% 50.8%  30.5%
General Electric Co

Coverage w/ VB 98.4% 94.5% 91.3% 84.4% 58.7% 25.9% 12.9%
Coverage w/o VB | 99.2%  97.9% 95.8% 92.7% 77.9% 44.6% 25.3%
McDonald’s Corp

Coverage w/ VB 98.6% 96.1% 93.0% 86.7% 59.0% 26.1% 13.2%
Coverage w/o VB | 99.3%  98.6% 96.7% 92.9% 73.7% 38.5%  19.8%
Pfizer Inc

Coverage w/ VB 98.9% 95.6% 92.5% 85.5% 59.5% 26.7% 14.3%
Coverage w/o VB | 99.6%  97.8% 96.6% 93.2% 76.8% 39.9%  20.8%
Starbucks Corp

Coverage w/ VB 98.2% 95.6% 92.5% 86.5% 59.8% 27.0% 13.9%
Coverage w/o VB | 98.8%  97.2%  95.5%  92.5% 75.1% 39.3%  21.6%

Table 1: Coverage of centered t+ 1 forecast intervals of individual stock returns averaged
over all 2044 observations.
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