A subordinated stochastic process model
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Abstract

We introduce a new stochastic model for non-decreasing processes which can
be used to include stochastic variability into any deterministic growth function via
subordination. This model is useful in many applications such as growth curves
(children’s height, fish length, diameter of trees, etc) and degradation processes
(crack size, wheel degradation, laser light, etc). One advantage of our approach is
to be able to easily deal with data that are irregularly spaced in time or different
curves that are observed at different moments of time. With the use of simulations
and applications, we examine two approaches to Bayesian inference for our model:
the first based on a Gibbs sampler and the second based on approximate Bayesian
computation.
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1 Introduction

Growth processes are usually described using discrete time models where the mean func-
tion is deterministic and a stochastic element is introduced via an additive, random noise
component. An alternative approach is to consider continuous time modelling. In the
literature some stochastic growth models are proposed using stochastic differential equa-
tions to model the variations ([1], [2]). However, the solution of these equations are not
monotonically increasing and therefore can fail to model non-decreasing growth pro-
cesses like, for example, children’s height, fish size or crack length. We introduce a new
stochastic model for non-decreasing processes which can be used to include stochastic
variability into any deterministic growth function via subordination.

2 The model

Consider a birth-death process (BDP), {U; : t > 0}, that is a continuous, time homoge-
neous, Markov process with finite state space, such that if, at time ¢, the process is in
state 7, after an exponential amount of time, then it moves to either of the neighbouring
states ¢ = ¢4+ 1 or ¢ — ¢ — 1. The process U; is uniquely determined by the generator
matrix, Q, and the initial distribution of the process, vy.



The transition rate matrix Q is a tri-diagonal matrix with parameters a > 0, the
instantaneous birth rate and 5 > 0, the instantaneous death rate. Let S = {a + ib;i =
0,...,k} be the state space, where a > 0 is the minimum state value, b is a jump size
and k + 1 is the number of states.

Now we define a continuous state process, {V; : t > 0}, such that

t
V, = J/ Usds, (1)
0

where J > 0. This is a non-decreasing, continuous time process. Realizations of V; are
the path integrals of a simple stochastic process and their trajectories are piece-wise
linear.

Finally, we will consider a simple time change of the process V; governed by any
deterministic non-decreasing function (see figure 1). Therefore, we define our stochastic
growth process, {Y; : t > 0} to be the continuous time stochastic process with continuous
state space, defined as

Y: = VG’(t)7 (2)

where V; as defined in (1) is a subordinator and G(t) is a deterministic non-decreasing
function.
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Figure 1: Time change

We show that assuming stationary state of the Markov process, then the mean func-
tion of the process Y; is proportional to the function G: E[Y;] = E(U;)JG(t). This means
that if J = 1/E[U,;] then the expected value of the process is exactly the deterministic
function governing the time change. This fact suggests to use any standard parametric
functions commonly used to model the particular kind of the process to drive the time
change. For example, for growth curves a logistic or Gompertz function could be used,
for fish size the von Bertalanffy growth function could be used, etc.

The variance of the process is increasing with time and its magnitude depends on
the instantaneous intensity rates of the Markov process. Illustrative applications and
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Figure 2: Simulated realizations and real bacterial growth curves

simulations are performed via Bayesian inference. See figure 2 for an application to
bacterial growth.

The aim of our work was to propose a new stochastic process suitable to model
growth process. Thus, the model developed shows two nice features: the growth paths
are non-decreasing and the mean function of the process is equal to the parametric
function governing the time change.
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