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Abstract

In dynamic linear models (DLMs), MCMC sampling can often be very slow for estimating the posterior
density — especially for longer time series. In particular, in some regions of the parameter space the
standard data augmentation algorithm can mix very slowly. Using some of the insights from the data
augmentation for multilevel models literature, we explore several alternative data augmentations for a
general class of DLMs and we show that no “practical” sufficient augmentation exists. In addition, we
utilize these augmentations to construct several interweaving algorithms — though we cannot construct
an ancillary-sufficient interweaving algorithm (ASIS) since no sufficient augmentation exists, we find two
ancillary augmentation and are able to construct a componentwise interweaving algorithm that uses ASIS
for each model parameter conditional on the rest. Using the local level DLM, we show how to construct
several of these algorithms and conduct a simulation study in order to discern their properties. We find
that several algorithms that outperform the usual “state sampler” for many values of the population
parameters, though there is room for improvement because one or more steps of the more efficient
algorithms involves an often inefficient rejection sampling draw from a class of density that contains the
generalized inverse Gaussian as a special case.

Keywords: data augmentation; time series; interweaving

1 Introduction

In dynamic linear models (DLMs), MCMC sampling can often be very slow for estimating the posterior
density — especially for longer time series. In particular, in some regions of the parameter space the standard
data augmentation algorithm can mix very slowly. Using some of the insights from the data augmentation for
multilevel models literature, we explore several alternative data augmentations for a general class of DLMs.
The generic DLM can be defined as follows:

yt = Ftθt + vt vt
ind∼ Nk(0, V ) (1)

θt = Gtθt−1 + wt wt
ind∼ Np(0,W ) (2)

for t = 1, 2, · · · , T , and v1:T , w1:T independent. Equation (1) is called the observation equation and equation
(2) is called the system equation. Similarly, v1:T are called the observation errors, V is called the observation

1



variance, w1:T are called the system disturbances and W is called the system variance. The observed data
is y1:T while θ0:T is called the latent states, and is the usual DA for this model. For each t = 1, 2, · · · , T , Ft
is a k × p matrix and Gt is a p × p matrix. Let φ denote the vector of unknown parameters in the model.
Then possibly F1:T , G1:T , V , and W are all functions of φ, but we will assume φ = (V,W ). To complete the
model specification in a Bayesian context, we need priors on θ0, V , and W . We’ll use the standard approach
and assume that they are mutually independent a priori and that θ0 ∼ N(m0, C0), V ∼ IW (ΛV , λV ) and
W ∼ IW (ΛW , λW ) where m0, C0, ΛV , λV , ΛW , and λW are known hyperparameters and IW (Λ, λ) denotes
the inverse Wishart distribution with degrees of freedom λ and positive definite scale matrix Λ.

2 Results for the General DLM

The standard method of estimating this model is via data augmentation (DA), as in Frühwirth-Schnatter
[1994] and Carter and Kohn [1994]. The basic idea is to implement a Gibbs sampler with two blocks. The
generic DA algorithm with parameter φ, augmented data θ, and data y obtains the k + 1’st state of the
Markov chain, (φ(k+1), theta(k+1)), from the k’th state, φ(k) as follows:

Algorithm 1. DA algorithm.

[θ|φ(k)] → [φ(k+1)|θ].

We construct two more data augmentations, the scaled disturbances, given by γ0 = θ0 and γt = L−1
W (θt−

Gtθt−1) for t = 1, 2, · · · , T where LW is the Cholesky factor of W , and the scaled errors, given by ψ0 = θ0 and
ψt = L−1

V (yt−Ftθt) for t = 1, 2, · · · , T where LV is the Cholesky factor of V . The scaled disturbances are well
known in the time series and multilevel models literature, e.g. Frühwirth-Schnatter [2004], Papaspiliopoulos
et al. [2007], and Van Dyk and Meng [2001], as the “non-centered augmentation” but the scaled errors are
novel. Both DAs are ancillary augmentations (AAs) — generic DA θ is an AA if p(θ|φ) = p(φ) where φ is the
model parameter. If we can find a sufficient augmentation (SA), i.e. a DA θ such that p(y|θ, φ) = p(y|θ) where
y is the data, then we can construct an ancillary–sufficient interweaving algorithm (ASIS) from Yu and Meng
[2011]. We show that any SA would be impractical to use, but nevertheless construct several interweaving
algorithms including GIS and CIS algorithms. A GIS algorithm, or general interweaving strategy, based on
two DAs θ and γ has the form

Algorithm 2. GIS Algorithm.

[θ|φ(k)] → [φ|θ] → [γ|θ, φ] → [φ(k+1)|γ]

while a CIS algorithm, or componentwise interweaving strategy, essentially runs a GIS step for φ1 given
φ2 and a separate GIS step for φ2|φ1 where φ = (φ1, φ2). Much like the Gibbs sampler, this can be extended
to multiple GIS steps and some of them may even be standard Gibbs steps. In particular, each GIS step
can be an ASIS step when the two DAs used in that step form an AA-SA pair for φi|φ−i. We show that the
following CIS algorithm for the DLM is equivalent to a CIS algorithm with ASIS steps:

Algorithm 3. Full CIS for DLMs, based on states.

[θ0:T |V (k),W (k)] → [V |W (k), θ0:T ] → [ψ0:T |V,W (k), θ0:T ] → [V (k+1)|W (k), ψ0:T ] →
[θ0:T |V (k+1),W (k), ψ0:T ] → [W |V (k+1), θ0:T ] → [γ0:T |V (k+1),W, θ0:T ] → [W (k+1)|V (k+1), γ0:T ].

Furthermore, we show that this algorithm is the same as the following Dist-Error GIS algorithm with
some steps rearranged and V and W drawn separately instead of jointly:

Algorithm 4. Dist-Error GIS for DLMs.
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Parameter State Dist Error State-Dist State-Error Dist-Error Full CIS
V R < 1 R < 1 R > 1 R < 1 R 6≈ 1 R 6≈ 1 R 6≈ 1
W R > 1 R < 1 R > 1 R 6≈ 1 R > 1 R 6≈ 1 R 6≈ 1

Table 1: Rule of thumb for when each algorithm has a high effective sample size for each variable as a
function of the true signal-to-noise ratio, R = W/V .

[γ0:T |V (k),W (k)] → [V |W (k), γ0:T ] → [W |V, γ0:T ] →
[ψ0:T |V,W, γ0:T ] → [V (k+1)|W,ψ0:T ] → [W (k+1)|V (k+1), ψ0:T ].

3 Simulation Study in the Local Level Model

We apply these algorithms in a worked example using the local level model where Gt = Ft = 1 for t =
1, 2, · · · , T with one difference — V and W are sampled separately instead of jointly when conditioning on
the scaled disturbances or the scaled errors. In doing so, when we draw W |V, γ0:T or V |W,ψ0:T , we draw
from the following density

p(x) ∝ x−α−1 exp
[
−ax+ b

√
x− β/x

]
where α, a, β > 0 and b ∈ <. This density contains the generalized inverse Gaussian as a special case when
b = 0, but is difficult to sample from efficiently, which hurts any algorithm based on the “scaled” DAs. We
use adaptive rejection sampling (Gilks and Wild [1992]) when possible, but otherwise use rejection sampler
with a Cauchy proposal for log(x).

Using this worked example, we simulated a fake dataset from the local level model for various choices
of V , W , and T . We created a grid over V –W space with (V,W ) ranging from (10−2, 10−2) to (102, 102)
and we simulated a dataset for all possible combinations of V and W with each of T = 10, 100, 1000. Then
for each dataset, we fit the local level model using each DA algorithm, each GIS algorithm based on any
two of the DAs, and the CIS algorithm. We used the same rule for constructing priors for each model:
θ0 ∼ N(0, 107), V ∼ IG(5, 4V ∗), and W ∼ IG(5, 4W ∗), mutually independent where (V ∗,W ∗) are the true
values of V and W used to simulate the time series. So the prior mean is equal to the true values of V and
W so that both the prior and likelihood and thus the posterior roughly agree about the likely values of V
and W . For each dataset and each sampler we obtained n = 3000 draws and threw away the first 500 as
burn in. The chains were started at the true values used to simulated the time series, so we can examine the
behavior of the chains to determine how well they mix but not how quickly they converge. We look at the
effective sample size (ESS) (see e.g. Gelman et al. [2003]) of each component component in order to assess
the MCMC efficiency of each sampler.

Table 1 summarizes the results for each MCMC sampler. We find that the state sampler, the DA
algorithm based on the states, has a high ESS for V when the population signal-to-noise ratio R = W ∗/V ∗

is less than one, and a high ESS for W when R is greater than one. The scaled disturbance sampler has a
high ESS for both V and W when R < 1 while the scaled error sampler has a high ESS for both V and W
when R > 1. The GIS algorithms, i.e. State-Dist, State-Error, and Dist-Error, all have high ESS for either
V or W when at least one of the two DA algorithms it is based on has a high ESS for that parameter, e.g.
the Dist-Error algorithm has high ESS for both V and W as long as R is not too close to one. The CIS
algorithm behaves essentially identically to the Dist-Error algorithm. One major caveat to this table is that
as T , the length of the time series, increases, all ESS’s decrease so that e.g. for the Dist-Error sampler to
have high ESS’s for V and W , R must be farther and farther from one.

Figure 1 contains a plot of the log time per 1000 effective draws, i.e.

log
time in minutes

effective sample size
.

When computational time is taken into account, the Dist-Error GIS and Full CIS algorithms come out on
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Figure 1: Log of the time in minutes per 1000 effective draws in the posterior sampler for V and W , and
for a time series of length T = 1000 in the state, scaled disturbance and scaled error samplers and for all
four interweaving samplers. Horizontal and vertical axes indicate the true values of V and W respectively
for the simulated data. The signal-to-noise ratio is constant moving up any diagonal. In the upper left the
signal is high, in the lower right the noise is high.

top, despite both algorithms having to inefficiently draw from the density mentioned above. With a better
method of drawing from these densities, these two samplers will improve even more.
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