
Bayesian Effect Fusion for Categorial and

Ordinal Predictors

Daniela Pauger1, Helga Wagner1

—————————————————————————————————
Second Bayesian Young Statisticians Meeting (BAYSM 2014)

Vienna, September 18–19, 2014
—————————————————————————————————

1 Department of Applied Statistics, Johannes Kepler University, Linz, Austria
<daniela.pauger,helga.wagner>@jku.at

Abstract

We extend Bayesian variable selection methods to categorial and ordinal pre-
dictor variables. We use a hierarchical spike and slab prior distribution on the
regression effects to reduce the possibly high-dimensional vector of coefficients by
fusion of similar effects and removing of variables with no non-zero effects. The
demonstrate the effectiveness of our methods we model the income in Austria based
on SILC (= survey on income and living conditions) data.
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1 Introduction

In regression type models often many of the collected variables are categorial, measured
on an ordinal or nominal scale. The usual modelling strategy using dummy variables for
each category can easily lead to a high-dimensional vector of regression effects. A sparse
representation of the model can be achieved by fusing category levels with essentially
the same effect into one category and by removing variables where none of the levels has
a non-zero effect.

2 Model

Let y denote the normal response in a standard linear regression model with j = 1, . . . , p
categorial covariates cj . We assume that the j-th covariate has Kj+1 categories 0, . . . ,Kj

and the first category 0 defines the reference category. We specify the linear regression
model as

y = µ+

p∑
j=1

Kj∑
k=1

Xjkθj,k0 + ε, ε ∼ N (0, σ2)

with regressors Xjk defined as in [2] using split coding for ordinal covariates, i.e.

Xjk =

{
1, for cj ≥ k
0, otherwise,

k = 1, . . .Kj
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and usual dummy coding for nominal covariates.
For the nominal covariates the regression effects corresponding to the Kj dummy

variables can be interpreted as the effect contrast of category k and the reference cate-
gory. To allow for fusion of level effects we define for all k > l by θj,kl the effect contrast
of categories k and l of covariate cj , which leads to the restriction

θj,k0 − θj,l0 − θj,kl = 0, for all 0 < l < k ≤ Kj .

We subsume all parameters θj,kl with 0 ≤ l < k ≤ Kj in the vector θj .

3 Priors and Inference

To encourage sparsity in the coefficient vectors we specify for each element of θj a spike
and slab prior distribution [1] hierarchically as

p(θj,kl|δj,kl, τ2) ∼ δj,klN (0, τ2) + (1− δj,kl)N (0, rτ2),

where r is a small value and δj,kl is an indicator for the slab component with prior
distribution p(δj,kl = 1) = wj . wj corresponds to the weight of variable j and is either
fixed or assigned a hyperprior, such as a Beta hyperprior wj ∼ B(a0j , b0j). For the
variance parameter τ2 we investigate various prior choices. Effect fusion is accomplished
by the spike component: If δj,kl = 0, the effect θj,kl is assigned to the spike component
and hence shrunk to zero. Thus the corresponding level effects are fused.

Inference is accomplished by sampling from the posterior distribution using MCMC
methods based on a Gibbs sampling scheme. To guarantee the restriction on the param-
eters θj we use either the kriging algorithm described in [4] or soft restrictions based on
an augmented model described in [3].

4 Application

We use data from EU-SILC in 2010 to model personal income of full-time employees
in Austria. The data set provides a wide range of variables on financial and living
aspects of households as well as demographic characteristics of individuals. We restrict
our analysis to full-time employeesand model the logarithm of the annual income using
sex, age (grouped), Austrian federal state of residence, citizenship and highest education
achieved as potential regressors.
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