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Abstract

We investigate the frequentist properties of Bayesian credible sets in the Gaussian
white noise model, where the truth is assumed to have regularity β ∈ [B, 2B]. First
we show that the classical adaptive Bayesian techniques, i.e. the hierarchical Bayes
and the marginal likelihood empirical Bayes, do not provide trustworthy confidence
sets. Then we introduce a new empirical Bayes method based on risk estimation
which has optimal frequentist behaviour in the sense that it provides rate adaptive
confidence sets with good coverage.
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1 Introduction

In statistical applications confidence sets play a highly important role. However, the
construction of confidence sets might be problematic do to lack of theoretical results or
computational complexity, specially in nonparametric models.

Bayesian methods offer an alternative method for interval estimation. The Bayesian
credible set is the set accumulating a large fraction (typically 95%) of the posterior mass.
These sets can have various forms and are intended to visualize the remaining uncertainty
in the estimation. Due to the heavy computational machinery for Bayesian methods the
construction of credible sets is more feasible. However the frequentist interpretation of
these sets are rather unclear. It is not know in general whether one can use credible sets
as confidence sets or by doing so one gets missleading uncertainty quantification.

In our work we investigate the frequentist coverage of adaptive Bayesian credible sets
in the Gaussian white noise model. First we show that the classical adaptive Bayesian
methods, i.e. the hierarchical Bayes (HB) and the marginal likelihood empirical Bayes
(MLEB) methods provide overconfident, haphazard uncertainty quantification. Then we
introduce a new empirical Bayes method based on risk estimation, which has optimal
frequentist properties.
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2 Results

In our work we considered the Gaussian white noise model

Xi = θ0,i +
1√
n
Zi, i = 1, ...,

where X = (X1, ..) denotes the noisy observation, Zi are iid standard normal random
variables and θ0 = (θ0,1, ...) is the unknown infinite dimensional parameter of interest.
We assume furthermore that the true parameter θ0 belongs to the Sobollev ball Sβ(M) =
{θ ∈ `2 :

∑∞
i=1 θ

2
i i

2β < M} for some (unknown) regularity parameter β ∈ [B, 2B] (with
known boundary parameter B) and (known) radius parameter M > 0.

In the Bayesian approach as a first step we endow θ0 with a prior distribution

Πα(·) =
∞∏
i=1

N(0, i−1−2α),

where α > 0 is the regularity hyper-parameter of the prior. The optimal choice of the
hyper-parameter α highly depends on the unknown regularity parameter β, hence one
has to use a data driven approach in the choice.

2.1 Classical adaptive techniques

The two, probably most well known method for choosing the hyper-parameter α are the
MLEB and HB methods. In the HB method the unknown hyper-parameter is endowed
first with a hyper-prior λ(α) and in the Bayesian analysis this two level hierarchical prior
is applied

Π(·) =

∫ 2B

B
λ(α)Πα(·)dα.

In contrast to this in the MLEB method the hyper-parameter is estimated by the max-
imum marginal likelihood estimator α̂n and then this estimator is plugged in into the
posterior distribution:

Πα̂n(·|X) = Πα(·|X)
∣∣∣
α=α̂n

.

Natural credible sets are balls centered around the posterior mean θ̂Mn and θ̂Hn with
radius rMn,γ and rHn,γ , for the MLEB and HB methods, respectively, given as

Πα̂n(θ : ‖θ − θ̂Mn ‖2 ≤ rMn,γ |X) = 1− γ and Π(θ : ‖θ − θ̂Hn ‖2 ≤ rHn,γ |X) = 1− γ.

Then we introduce some additional flexibility by letting the balls to be blown up by a
constant factor L > 0:

CMn (L) = {θ : ‖θ − θ̂Mn ‖2 ≤ LrMn,γ} and CHn (L) = {θ : ‖θ − θ̂Hn ‖2 ≤ LrHn,γ}. (1)

Theorem 1 (Theorem 1 and 2 of [14]) For every β ∈ [B, 2B] and M > 0 there
exists a θ0 ∈ Sβ(M) and a subsequence nj →∞ such that for every L > 0

Pθ0(θ0 ∈ CMnj (L))→ 0 and Pθ0(θ0 ∈ CHnj (L))→ 0.

The above negative results are due to the fact that the MLEB and HB methods are
based on the marginal likelihood function, while to have good coverage and optimal size
for the credible sets a correct bias-variance trade-off is required, which is not directly
related to the likelihood.
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2.2 New empirical Bayes procedure

We propose a new empirical Bayes method which corrects the weaknesses of the classical
adaptive Bayesian techniques and achieves the frequentist limitations. Our estimator α̃n
instead of maximizing the marginal likelihood function balances out the bias and variance
terms:

α̃n = inf{α ≥ B : B̂n,kn(α) ≥ n−α/(1+2α)} ∧ 2B,

where n−α/(1+2α) is the variance of the posterior distribution for fixed hyper-parameter
α and B̂n,kn(α) is an estimator of the bias

B̂2
n,kn(α) =

n1/(1/2+2B)∑
i=1

i2+4α

(i1+2α + n)2
(X2

i −
1

n
).

The construction of the credible sets CRn (L) is done in the same way as in (1) with
α̂n replaced by α̃n. The next theorem states that the so constructed credible sets have
rate adaptive size and good coverage properties.

Theorem 2 (Theorem 3 of [14]) There exists a large enough constant L > 0 such
that

inf
θ0∈∪β∈[B,2B]S

β(M)
Pθ0(θ0 ∈ CRn (L)) ≥ 1− γ.

Furthermore for every β ∈ [B, 2B] there exists a constant K(β) > 0 such that

inf
θ∈Sβ(M)

Pθ0(‖CRn (L)‖2 ≤ K(β)n−β/(1+2β)) ≥ 1− γ.

3 Discussion

In nonparametric models the construction of confidence sets with optimal size and good
coverage is not possible in general; see for instance [7], [4], [6]. However, by assuming in
the Gaussian white noise model that β ∈ [B, 2B] (for some fixed B > 0) the construction
of adaptive confidence sets is possible [11], [3].

For general regularity parameter β the construction of adaptive confidence sets is
not possible, some additional restriction has to be introduced. In the frequentist lit-
erature a well studied, natural assumption is the self-similarity condition, under which
the construction of adaptive confidence sets is possible; see [9], [5], [2], [8]. Assuming
self-similarity in [13] it was shown that the MLEB credible sets have good frequentist
properties (optimal size and good coverage).

Follow up and related results on the coverage of adaptive credible sets appeared
recently. In the working paper [12] the coverage properties of the rescaled Brownian mo-
tion is studied in the nonparametric regression model. Oracle type of results for credible
sets were derived for the Gaussian white noise model in [1]. An adaptive nonparametric
Bernstein-von Mises theorem under self-similarity constraints was given in [10].
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