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Abstract

Linear mixed modeling using the package lme4 is a standard statistical tool in
psychology and linguistics research. Recent developments in statistical computing—
most recently, the arrival of Stan—have made it relatively easy to fit complex linear
mixed models in a fully Bayesian framework. However, it may not be obvious to
users of frequentist tools such as lme4 how such Bayesian models can be defined.
We provide a tutorial showing how the most common linear mixed models (repeated
measures designs with a full variance-covariance structure in the random effects) can
be fit and evaluated using JAGS and Stan.
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1 Introduction

Ever since the arrival of the package lme4 [1], the use of linear mixed models in psy-
chology and linguistics has increased dramatically. In the present tutorial, we show
how standard models in psychology and linguistics can be fit easily using Bayesian tools
such as JAGS [4] and Stan [5]. Our presentation focuses on practical details, in order
to allow the reader to quickly start writing their own models. For simplicity, we focus
on two basic designs: a two-condition repeated measures study, and a 2 × 2 repeated
measures factorial design. All code and data are provided here: http://www.ling.uni-
potsdam.de/∼vasishth/BayesLMMs.html.

There are no prerequisites apart from having some exposure to fitting linear mixed
models using lme4, and having the relevant software installed: JAGS, Stan, rjags, rstan
in R, and any associated software; see the JAGS (http://mcmc-jags.sourceforge.net) and
Stan (mc-stan.org) websites for details. Stan is the more general programming language
for psycholinguistic research because it allows the researcher to flexibly fit fairly complex
models. However, we chose to introduce JAGS first because it uses BUGS syntax, which
is currently widely used in textbooks; anyone learning to do Bayesian analysis would
need to understand BUGS syntax in order to read introductory books.
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2 A typical repeated measures design

We show how to fit the following two types of models using JAGS and Stan, for a
two-condition experiment, and for a 2 × 2 factorial design. More complex designs are
extensions of these two basic types. In this abstract, we only discuss the two-condition
case, using simulated data.

Suppose we have a two-condition experiment, where the dependent variable is reading
time (RT) and the predictor is a sum-contrast coded categorical predictor, condition;
assume that we have several participants j = 1, . . . , J , and each participant has been
exposed to multiple items k = 1, . . . ,K. The data are indexed by i = 1, . . . , I. Using
lme4, a standard model defines a crossed varying intercepts and varying slopes structure:

RTijk = β0 + u0j + w0k + (β1 + u1j + w1k)conditioni + εi (1)

The lme4 syntax for this model is:

m1<-lmer(rt~condition+(1+condition|subj)+(1+condition|item),data)

The varying intercepts u0j and w0k are adjustments to the fixed intercept β0, and
the varying slopes u1j and w1k are adjustments to the fixed slope β1. We assume that
these adjustments are normally distributed with mean 0 and some unknown variance.
Importantly, we also assume that the varying intercepts and slopes for participants and
for items are correlated. Model 1 is useful in psycholinguistic research because it faith-
fully reflects all the sources of variance in the experimental design. The experiment
design suggests a natural partitioning of RT into groups associated with a given sub-
ject or a given item. These groups are specified by considering RTijk with either the
subject index j or the item index k held constant. Groups defined along these lines
display systematically different patterns of variance. For example, by-subject variance
in language comprehension tasks has been attributed to factors such as individual differ-
ences in processing speed [3]. Cognitive models of performance in such tasks often make
predictions about the relationship between a subject’s random intercept and slope. For
instance, a fast reader might be expected to take less time resolving an ungrammaticality
on the rationale that processing speed in normal reading reflects the processing speed
for resolving ungrammaticalities. Such a prediction can be evaluated experimentally by
estimating the correlation between u0 and u1. A positive correlation between the varying
intercepts and varying slopes would support such a prediction.

If the correlation between the subjects’ random intercepts u0j and random slopes
u1j is to be estimated, the model must specify that u0j and u1j covary. This simply
means that the different variances are not mutually independent. The assumption is
that u0 and u1 are normally distributed with mean 0 and with variance and covariance
given by the matrix Σu, given below. The parameters in Σu are unknown, and so we
must estimate them. The parameter ρu indicates the correlation between u0 and u1; it
is our estimate of ρu by which we evaluate predictions about individual differences in
experimental conditions. A variance-covariance matrix Σw can likewise be defined for
by-item random effects.

Σu =

[
σ2u0 ρu σu0σu1

ρu σu0σu1 σ2u1

]
(2)

Σw =

[
σ2w0 ρw σw0σw1

ρw σw0σw1 σ2w1

]
(3)
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To state all of this more formally, the linear mixed model for this particular example
can be specified by assuming that the varying intercepts and slopes by participants and
by items have the following bivariate distribution:(

u0j
u1j

)
∼ N

((
0
0

)
,Σu

) (
w0k

w1k

)
∼ N

((
0
0

)
,Σw

)
(4)

The variance components associated with participants and items are generally treated
as nuisance parameters in psycholinguistic work. They are generally included in the
model only to discount the possibility that the fixed effects estimates depend on the
particular subjects and items used in the experiment. However, as mentioned above,
there are situations where these variance components can be of intrinsic theoretical
interest; an example is where we have a theory about how reading speed of a participant
affects the magnitude of their ungrammaticality effect.

In addition to explaining how these models are specified in JAGS and Stan, we also
show how to evaluate model fit; here, we follow the recommendations in [2]. Gelman and
colleagues recommend posterior predictive checks: generating samples from the posterior
distribution and comparing the properties of these samples with the data.

Finally, we discuss why it is worth going through all the effort of learning to fit
Bayesian linear mixed models. The most important reason is that, even though the
experimental design demands that a full variance-covariance structure be specified, we
often do not have enough data to estimate all the variance components. lme4 will often
fail to estimate the parameters in such a situation, or fail to converge. In the Bayesian
framework, in such situations the priors will dominate in determining the posterior
distributions. A related point is that lme4 can often deliver estimates of correlation
parameters that bear little relation to the true value; this becomes a serious issue when
these parameters are of theoretical interest. In the Bayesian setting, these estimates
will tend to be quite conservative. A further advantage of the Bayesian framework is
that models can be flexibly altered to reflect our assumptions about how the data were
generated. This allows for unprecedented flexibility in fitting linear mixed models that
better reflect the underlying generating process.
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