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Abstract

Combining information sources, exploited in many areas of mathematics, has
been an open problem for decades. It was approached from many point of views
and different methods for assignment of the weights to the sources were developed.
Some of them prefer subjective influence. Sometimes a reduction of the space of
sources is used. We propose a method based on tools of information theory, i.e. the
minimum cross-entropy principle and the Kullback-Leibler divergence. These help
us eliminate the problem of subjectivity and allow us compute the weight for each
considered source.
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1 Introduction

Combining information sources has received much attention in the past few decades in
many fields of mathematics, e.g. statistical inference in sensor networks and opinion
pooling in market scenarios. Towards the biggest issue, the assignment of weights to
the sources (sensors, experts) many methods were developed. Here, we are particu-
larly interested in the amount of subjectivity included in assigned weights. In order
to eliminate the subjectivity we propose a combining procedure based on the tools of
information theory applied before, e.g., in reduction of the space of sources [2]. Rather
than reducing the space of information sources we explore the divergences between the
sources, i.e. the Kullback-Leibler divergence [3], and principles ensuring we obtain one
particular solution, i.e. the minimum cross-entropy principle [4].

2 Combining Information Sources

Let us have an unknown n-dimensional probability vector ¢ and a finite number of infor-
mation sources, j = 1,...,s. Assume also that each of them provides a probability vector



pj, an observation about an unknown probability vector ¢ (pji,¢; > 0 and > ;" | pji = 1,

SPgi=1,5=1,...,5).
We search for the estimate ¢ of ¢ satisfying the following (see [1]):

Cj = arg }nin Ew(q|p1,...,ps)(KLD(Q‘|‘j) |p17 o 7p8)
q

where E(.|.) is the conditional expected value conditioned on py,...,ps, 7(.|.) is a pos-
terior probability density function (pdf) conditioned on py,...,ps and KLD(.||.) is the
Kullback-Leibler divergence

KLD(ql|g) = Zqz lnf (1)
Z
The minimizing element is the conditional expectation of ¢ conditioned on py, ..., ps
q= Eﬂ'(q\pl,...,ps)(Q‘ply e 7ps) (2)

with respect to yet unspecified posterior pdf w(gq|p1,...,ps).

2.1 Posterior probability density determined by minimum cross-entropy
principle

To obtain the posterior pdf m(q|p1,...,ps) we exploit the minimum cross-entropy prin-
ciple. This principle states that from the set of all possible pdfs, satisfying additional
constraints on expected values of ¢, we should choose the one minimizing the following

function: " )
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which is the Kullback-Leibler divergence of known prior pdf mp(g) from unknown poste-
rior pdf 7(qlp1, ..., ps).

2.2 Constraints on Expected Values of Kullback-Leibler divergence

We expect that each source provides a reasonable observation about ¢ in the sense that
the conditional expectation of the Kullback-Leibler divergence (3) of ¢ from source’s
probability vector is bounded. In our case the expected value is conditioned on p1, ..., ps
and taken with respect to the posterior pdf 7(q|p1,...,ps). We also assume that these
conditional expectations are equal for all sources, thus none of the sources is preferred.
The constraints look as follows:

Eglp ..o KED(P10) = En(gipy.....p KLD (ps]]9), (4)

where j=1,...,5s — 1.

We see that (3) together with (4) leads to a constrained nonlinear optimization
task. If the prior distribution m(q) is Dirichlet distribution with prior parameters
(01, - - ., Von), the pdf minimizing (3) and satisfying (4) is the pdf of the Dirichlet dis-
tribution with updated parameters

s—1
vi =i+ > Ni(pji — pei); (5)
j=1
where ); are the Lagrange multipliers. Values of the multipliers are then simply com-
puted by minimization of (3) with m(g|p1,...,ps) being the pdf of the Dirichlet distri-
bution with parameters given in (5).



2.3 Final Combination of Information Sources

According to (2) and properties of Dirichlet distribution we obtain

G Vi voi + Y2521 A (pji — psi) (6)
LY 2 im1 Voi .

3 Illustrative Example

Let us assume q is a 3-dimensional probability vector and 3 information sources provided
the following observations:

p= (035, 0.25, 0.40)
p2 = (0.40, 0.50, 0.10)
ps= (0.65, 0.15, 0.20).

Prior pdf my(q) is the pdf of the Dirichlet distribution with parameters (vp1, vp2, vo3) =
(1,1,1). The optimization task (3) with constraints (4) was solved numerically in Matlab
for 100 randomly chosen initial values of the Lagrange multipliers A1, Ao. For all 100
initial values of the Lagrange multipliers the resulting values of A; and Ay (and thus the
value of ¢ in (6)) were the same:
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4 Conclusion

This contribution brings insight into a procedure for combining information sources based
on information theory. We successfully applied the minimum cross-entropy principle
and the Kullback-Leibler divergence and obtained the weighted combination where the
weights are not subjectively influenced and no reduction of the space of sources was
needed. Experimental results suggest that the Lagrange multipliers A;, used in the final
combination, converge to the same value for different starting points in the nonlinear
optimization.
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