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Abstract

Aortic diseases are one relevant cause of death in western countries. They involve
significant alterations of the aortic wall tissue, with consequent changes in the stiff-
ness, i.e., the capability of the vessel to vary its section secondary to blood pressure
variations. In this paper, we propose a Bayesian approach to estimate the aortic
stiffness and its spatial variation, exploiting patient-specific geometrical data non-
invasively derived from Computed Tomography Angiography (CTA) images. The
proposed method is tested considering a real clinical case, and outcomes show good
estimates and the ability to evaluate local stiffness variations. The final objective is
to support the adoption of imaging techniques such as the CTA as a standard tool
for early diagnosis of aortic diseases.

Keywords: ordinary differential equations; parameter estimation; aortic stiff-
ness; descending aorta; computed tomography angiography.

1 Introduction

Arterial stiffness, i.e., the capability of the vessel to vary its section secondary to blood
pressure variations, is a significant predictor of cardiovascular morbidity and mortality.
In this scenario, this work proposes a stochastic method to assess the stiffness of a given
aortic region and its spatial variation, based on non-invasively acquired information.

Aortic pressure and radius observations are linked through a constitutive model of
the vessel wall, and the aortic stiffness is then estimated with a Bayesian approach
[2, 7]. This methodology has already given good results in other fields, e.g., biology
[1], heat transfer [5], and also biomechanics [6]; now we exploit its potentialities in this
application.

2 Stiffness estimation

We consider n cross-sections of an aortic segment. Each section ¢ (with i =1,...,n) is
assumed to be a thin-walled circular tube of isotropic linear elastic material with inner



radius 7;, thickness h;, and Young modulus FE;. Its constitutive equation is:

_ i (1) ,
dri= Pi(t)r:(2) dF (1)

where 7;(t) and P;(t) are the state variables observed at section i over time ¢, whereas
E;h; is unknown. The latter is assumed as a random quantity given by a constant
expected value [E;h;]o and a Gaussian white noise £ (t) scaled by 7:

E;h; = [Bihi)o +néF (t)

Time t is discretized into instants ¢; and state variables into values r; ; = r;(t;) and
P, j = P;(t;), respectively. Then, the discretized law is solved for P ;, and two further
white noises are introduced, due to pressure ( ﬁ) and radius (& j) measurement errors.
These noises are additive and proportional to F; ;1 and to the mean between r; ; and
Tij—1, respectively. Hence, (1) is rewritten as:
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In this way, the conditioned density f (RJ\Pi,j_l,m,j,m,j_l, [Eihi]o,n2,€2,¢2) is
Gaussian, with:
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Given m + 1 observations at instants {to,...,t;j,...,ty} over the cardiac cycle, the

likelihood function is:
f (pz‘fﬂ [Elhl]o ) T]27 527 1/}2) = H f (Pi,j‘Pi,j—la Ti,j7 ri,j—h [Elhl](] ) 7727 527 ¢2) (3)
j=1

where PZ and 7; denote the respective set of observations.
Parameters to estimate are [E;h;), Vi, n?, €2 and ¥?. The prior densities follow the
configuration usually adopted in the literature [6]:

g (772) = InvGamma (ay, By) g (62) = InvGamma (ae, Bc)
g (¥*) = InvGamma (ay, B) g ([Eihilo In?) = N ([BRE™ 207

where [Eh]gmm is set equal to 800 Pa - m to consider a Young modulus of 0.4 MPa
and a wall thickness of 2 mm. As for shape and scale factors of the errors, a,, = 0.125,
By = 0.1, o = 0.01, B = 0.01, oy, = 100, and By, = 10 are assumed. These choices
are such that the expected value of g (772) is [Eh]gmm /10, the expected value of g (62)
is 10, and the expected value of g (¢2) is 1073 Pa?/m?.
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Section (b)

Figure 1: (a) Aorta geometric reconstruction from CTA images with the 8 considered
sections; (b) Young modules E; estimated at each section i with h;=2 mm: posterior
means and error bars equal to posterior standard deviations.

3 Radius and pressure dataset

Radii r; ; are obtained from patient-specific CTA images. Each image is analysed to get
the internal vessel radii at each considered cross-section. Then, the presence of a certain
number of images (20 in our case) allows to get a temporal evolution of radii along with
the cycle. The adopted imaging analysis consists of the following three steps: acquisition
of patient-specific medical images; segmentation and anatomical reconstruction of the
lumen profile; virtual slicing of the three-dimensional reconstruction to get the mean
radius at each slice. A semi-automatic segmentation process is adopted, using the open
source software ITK-Snap (www.itksnap.org).

As for P, ;, direct non-invasive measurements in central arteries are impossible and,
for keeping the methodology non-invasive, they are generated using a lumped parameter
model of the arterial circulation, based on [3, 4]. This consists of a set ordinary differ-
ential equations for blood pressure and flow in different arterial segments. Numerically
solving the equations, the temporal evolution of pressure in each segment is obtained,
and values at the instants of CTA images are taken.

4 Results and conclusions

The proposed approach is applied to a real clinical case, considering an old female patient
with a descending aorta dilation, probably related to an aneurysm, which suggests a
localised vessel stiffening. Eight cross-sections in the descending aorta are taken, and
peripheral resistances of the lumped parameter model are increased by 40% with respect
to [3, 4] for considering patient’s hypertension. Data are reported in Table 1.

Estimates are obtained in JAGS [9] with 200,000 iterations, a burn-in of 10,000
iterations, and a thinning interval of 10. Satisfactory traceplots are obtained, thus
verifying the convergence of the model.

Young modules are derived assuming h; = 2 mm Vi; values are plotted in Figure 1.
Results show good estimates in accordance with the literature [8] and with other de-
terministic techniques applied to get model parameters. Moreover, the stiffness spatial
variation is caught, in agreement with the characteristics of the considered clinical case
where a localised stiffening is expected in some sections. Computational times for ob-
taining estimates once CTA images are stored, including time for dataset generation, are



Time % ‘ Sect. 1 Sect. 2 Sect. 3 Sect. 4 Sect. 5 Sect. 6 Sect. 7 Sect. 8
Cross-sectional radii from CTA images [mm]
0 12.91 12.77 13.95 15.37 15.43 14.41 12.87 12.46
5 13.16 12.97 14.10 15.55 15.68 14.43 12.95 12.61
10 13.31 13.18 14.54 15.76 15.89 14.54 13.20 12.76
15 13.36 13.35 14.57 16.02 15.97 14.67 13.18 12.91
20 13.38 13.39 14.60 16.12 16.11 14.78 13.32 13.00
25 13.47 13.48 14.71 16.13 16.12 14.78 13.36 12.94
30 13.49 13.42 14.67 16.05 16.12 14.71 13.27 12.89
35 13.56 13.48 14.57 16.00 16.01 14.67 13.24 12.84
40 13.47 13.42 14.38 15.86 15.95 14.64 13.21 12.78
45 13.35 13.29 14.37 15.79 15.88 14.57 13.22 12.76
50 13.30 13.20 14.35 15.73 15.74 14.51 13.11 12.74
55 13.18 13.07 14.12 15.57 15.70 14.50 13.05 12.69
60 13.14 13.01 14.05 15.49 15.71 14.43 13.04 12.60
65 13.11 12.95 14.03 15.47 15.60 14.41 13.00 12.56
70 13.07 12.88 13.93 15.35 15.56 14.38 12.96 12.57
75 13.01 12.86 13.90 15.29 15.47 14.35 12.93 12.54
80 12.96 12.80 13.85 15.27 15.41 14.32 12.88 12.49
85 12.95 12.75 13.77 15.16 15.40 14.21 12.85 12.39
90 12.84 12.66 13.70 15.11 15.36 14.24 12.86 12.40
95 12.83 12.72 13.71 15.14 15.34 14.26 12.78 12.39
100 12.91 12.77 13.95 15.37 15.43 14.41 12.87 12.46
Pressures from the lumped parameter model [mmHg]
0 92.34 92.31 92.27 92.24 92.20 92.17 92.13 92.10
5 101.98  101.08 100.20 99.26 98.37 97.56 96.83 96.14
10 121.46  121.22 120.95 120.61 120.24 119.84 119.41 118.87
15 133.55 133.44 133.31 133.14 13295 132.75 132,53 132.27
20 138.92  139.08 139.23 139.39 139.54 139.68 139.81 139.94
25 141.30 141.59  141.87 142.17 14247 142.76 143.05 143.35
30 140.69 141.04 141.38 141.75 142.11 14246 142.80 143.17
35 135.81 136.24 136.66 137.12 137.57 138.00 138.41 138.84
40 133.26  133.19 133.13 133.08 133.04 133.03 133.04 133.08
45 132.46  132.56 132.65 132.75 132.85 132.93 133.01 133.08
50 129.72  129.78 129.83 129.89 129.95 130.00 130.06 130.11
55 126.20 126.20 126.19 126.19 126.19 126.19 126.18 126.18
60 122,77 122.68 122.59 122.48 12237 122.26 122.15 122.03
65 119.09 118.94 118.79 118.61 11844 11827 118.09 117.90
70 114.77 11471  114.65 114.57 11449 11440 114.32 114.21
75 109.84 109.81 109.79 109.76 109.74 109.71 109.69 109.67
80 105.12  105.19 105.26 105.34 105.42 105.51 105.59 105.68
85 101.15 101.25 101.36 101.48 101.61 101.73 101.86 102.00

90 97.71 97.80 97.89 98.00 98.10 98.21 98.31 98.43
95 94.71 94.74 94.76 94.79 94.82 94.86 94.89 94.94
100 92.34 92.31 92.27 92.24 92.20 92.17 92.13 92.10

Table 1: Cross-sectional radii and pressures at the 8 cross-sections. Time is expressed
in percentage with respect to the cardiac cycle (equal to 0.8 seconds), and the first and
the last observations coincide due to the periodic cycle.



limited to some seconds, thus ensuring a practical clinical application of the method.
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