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Abstract

In this study, influential observation diagnostics based on case deletion approach
with the ith case deleted are examined for bayesian regression. For this purpose, the
formulas of Cooks distance, Welsch-Kuh distance and the Hadi measure which are
major case deletion diagnostics in linear regression are derived for bayesian regression
using conjugate prior distribution. To show the performance of proposed diagnostics
on detection influential observations in bayesian regression using conjugate prior
distribution, the pavement data is used.

Keywords: Bayesian Regression; Diagnostics; Influential Observations; Prior
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1 Introduction

Let y denote the vector containing data and let θ denote the vector of unknown pa-
rameters of model. The distribution of y for a fixed value of θ is called conditional
distribution of y given θ. Before examining the data, what it is known about likely
values for parameters is considered and this knowledge is translated into form of a prob-
ability distribution for θ. This is called the prior distribution of θ. Combining prior
distribution of θ and the conditional distribution of y given θ to obtain the conditional
distribution of θ given y is called posterior distribution of θ. Bayes’ formula provides a
means of combining the distributions of θ and of y given θ to obtain the distribution of
θ given y. It is expressed as

f(θ|y) = Cf(θ)f(y|θ) (1)

where C is a quantity that does not involve θ [1, 2]. The Bayes estimates of regression
coefficients are taken be the expectations of coefficients under posterior distribution.
These turns out to be exactly the same as the least squares estimates.

The linear regression model is model for the conditional distribution of y given a
vector of y given a vector of independent variables in x
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yi = x′iβ + εi, εi ∼ N(0, σ2) or y ∼ N(Xβ, σ2In)

[1]. Bayes formula in regression usually is used to obtain the posterior distribution
of all the parameters, β and σ2. But in this study, we are interested in β not in σ2.
The Bayes formula with β in place of θ and with all distributions conditional on σ2 is
expressed as

f(β|y, σ2) = Cf(β|σ2)f(y|β, σ2) (2)

where C is a quantity that does not involve β. Since f(β, σ2) does not involve β,
neither does f(β|σ2), f(β|y, σ2) = Cf(y|β, σ2)[2]. It is assuming that f(y|β, σ2) is
the p.d.f. of a multivariate normal distribution with mean vector Xβ and variance-
covariance matrix σ2I:

f(y|X,β, σ2) = C exp

(
− 1

2σ2
(y −Xβ)′(y −Xβ)

)
(3)

In least square analysis, the residual vector y−Xβ̂ is perpendicular to all the columns
of the regression matrix X, which implies that

(y −Xβ)′(y −Xβ) = (y −Xβ̂)′(y −Xβ̂) + (β − β̂)′X ′X(β − β̂)

Therefore,

f(β|y,X, σ2) = C exp

{
− 1

2σ2
(β − β̂)′(X ′X)(β − β̂)

}
(4)

Let take the form of the prior distribution of β conditional on σ2 to be multivariate
normal, that is,

f(β|σ2) = C exp

{
− 1

2σ2
(β − b)′(V )−1(β − b)

}
(5)

with some mean vector b and a variance-covariance matrix σ2V proportional to σ2. b
and V are chosen to reflect prior knowledge. For this purpose, the information provided
by previous study, gives some idea of what might be expected from the current study,
could be used.

The Bayes estimate of parameter vector β is the expectation of β under the posterior
distribution. This expectation is expressed as follow:

β̂bayes = (V −1 +X ′X)−1V −1b+ (V −1 +X ′X)−1X ′Xβ̂

= (V −1 +X ′X)−1V −1b+ (V −1 +X ′X)−1X ′y
(6)

[2].

2 Proposed influential diagnostics for the Bayesian Regres-
sion Analysis

In this section, we derived Cook’s distance, Welsch-Kuh distance and Hadi measure for
bayesian regression based on β̂bayes in (6).
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Cook’s distance for Bayesian regression (DBayes
i ): Cook’s distance [3] measures

distance between estimates of regression coefficients with ith observation β̂ and with-
out ith observation β̂−i.D

Bayes
i is proposed using case deletion approach and Sherman-

Morrison –Woodbury Theorem such as

DBayes
i =

(β̂bayes − β̂bayes,−i)′(X ′X)(β̂bayes − β̂bayes,−i)
σ̂2p

=
e2bayes,i (

∑n
j=1 h

2
bayes,ij)

σ̂2p(1− hbayes,ii)2

(7)

where e2bayes,i = xiβ̂bayes − yi and hbayes,ii =X(V −1 +X ′X)−1X ′.

The Welsch-Kuh distance for Bayesian regression (DFFITSbayes
i ):The impact

of ith observation on ith predicted value is measured by scaling change in prediction at
xi when ith observation is omitted. DFFITSbayes

i is proposed using difference between

β̂bayes and β̂bayes,−i as

DFFITSbayes
i =

|ŷbayes,i − ŷbayes,i,−i|
V ar(ŷbayes,i)

=

∣∣∣x′i(β̂bayes − β̂bayes,−i)∣∣∣
V ar(ŷbayes,i)

=
1

V ar(ŷbayes,i)

hbayes,iiebayes,i
(1− hbayes,ii)

(8)

Hadi Measure for Bayesian regression (Hbayes
i ): Hadi measure is used to detect

the overall potential influence. It can be modified for the Bayesian regression as

Hbayes
i =

p

1− hbayes,ii
d2bayes,i

1− d2bayes,i
+

hbayes,ii
1− hbayes,ii

, i = 1, 2, ..., n (9)

where d2bayes,i =
e2bayes,i

eTbayesebayes
is square of ith normalized residual.

3 Application on Pavement Data

The pavement data is obtained from study that examines effect of several factors on rate
at which a machine can rut asphalt pavement. The factors are considered as: viscosity of
asphalt, transformed by logarithm function (X1 ), percentage of asphalt in surface (X2 ),
percentage of asphalt in base (X3 ), percentage of fines in surface (X4 ), and percentage
of voids in surface (X5 ). The response variable (Y ) is logarithm of number of inches of
change in rut depth per million wheel passes [2]. Based on previous information a mean
vector and variance-covariance matrix for the prior distribution of β should be specified.
For the mean vector b, the estimate of β obtained from the previous study could be
chosen, which is

b = (−3.55,−0.44, 0.64, 0.13, 0.041, 0.14)

and for the variance-covariance matrix σ2V , the estimated variance-covariance matrix
of the estimate of β from the previous study could be chosen, which is
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V =



1690 −38 −174 −110 −10 −47
−38 4.07 3.46 3.23 0.47 0.23
−174 3.46 19.81 8.88 1.15 5.31
−110 3.23 8.88 12.47 −0.17 1.56
−10 0.47 1.15 −0.17 0.6 0.15
−47 0.23 5.31 1.56 0.15 2.69


[2]. Using these prior information, values of DBayes

i , DFFITSbayes
i , and Hbayes

i are

obtained by preparing code in R program. The corresponding index plots of DBayes
i ,

DFFITSbayes
i , and Hbayes

i that are shown in Figure 1, respectively.

(a) Index plot of DBayes
i (b) Index plot of DFFITSbayes

i

(c) Index plot of Hbayes
i

Figure 1: Index Plots of DBayes
i , DFFITSbayes

i and Hbayes
i

The index plots of DBayes
i , DFFITSbayes

i and Hbayes
i show that the observation 8 is

found as influential observation.
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