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Abstract

We propose a new sequential-Monte-Carlo-based sampler to estimate the parti-
tion function of certain graphical models. The sampler is profiled against a state-
of-the-art method on a problem from information theory, calculating the capacity
of the finite-size 2-D (1,∞) run-length limited constrained channel.
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1 Introduction

Estimating the partition function (normalization constant) of probabibilistic graphical
models (PGM) is ubiquitous in applications of Bayesian statistics. To give a few ex-
amples, it relates to the Bayes factor used in model comparison, evaluation methods
of models on previously unseen data and derived quantities such as the capacity of
communication channels.

Here we propose to use a fully adapted sequential Monte Carlo (SMC) algorithm to
estimate the partition function of rectangular graphical models with discrete variables.
We show how to make this algorithm computationally efficient by combining the SMC
sampler with ideas from Forward Filtering/Backward Sampling (FF/BS) proposed in
[1, 2]. Our example comes from information theory, estimating the noiseless capacity of
the 2-D (1,∞) run-length limited constrained channel. We profile our algorithm against
a state-of-the-art Monte Carlo estimation method proposed in [3].

2 Method

We consider rectangular PGM with pair-wise interaction between discrete variables.
That means that the joint probability mass function (PMF) of the set of random vari-
ables, X := {x1,1, . . . , x1,J , x2,J , . . . , xM,J}, can be represented as a product of factors
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over the pairs of variables in the graph:

p(X) =
1

Z

∏
(`j,mn)∈E

ψ(x`,j , xm,n). (1)

Here, Z—the partition function—is given by

Z =
∑
X

∏
(`j,mn)∈E

ψ(x`,j , xm,n), (2)

and ψ(x`,j , xm,n) denotes the so-called potential function encoding the pair-wise inter-
action between x`,j and xm,n.

It has been shown that the constrained channel can be modeled as a square lattice
PGM [3], which is a special case of (1) with J = M . The channel consists of random
variables x`,j ∈ {0, 1} with a constraint that no two horizontally or vertically adjacent
bits may both equal 1, i.e. ψ(x`,j , xm,n) = 0 if x`,j = xm,n = 1 else ψ(x`,j , xm,n) = 1. The
finite-size capacity CM is can then be described as a mapping of the partition function,

CM =
1

M2
log2 Z. (3)

However, computing Z is intractable for these types of models; whereby we propose
to estimate it using a fully adapted SMC [5]. That the sampler is fully adapted means
that the proposal distributions for the resampling and propagation steps are optimally
chosen with respect to minimizing the variance of the N importance weights. We define
xk to be the M -dimensional variable corresponding to all original variables in column k,

xk = {x1,k, . . . , xM,k}, k = 1, . . . ,M. (4)

x1 x2 x3 x4 x5 x6

(a) M ×M square lattice PGM

x1 x2 x3 x4 x5 x6

(b) Corresponding chain

Figure 1: Square lattice graphical
model converted to an undirected
chain.

This results in an undirected chain giving us a nat-
ural sequence of target distributions

γ1(x1) = φ(x1), (5a)

γk(x1:k) = γk−1(x1:k−1)φ(xk)ψ(xk,xk−1), (5b)

where φ(·),ψ(·) are the in-column and between-
column interactions respectively. We illustrate this
in Figure 1 for M = 6. Using a standard imple-
mentation of the SMC sampler is in this case com-
putationally prohibitive, the complexity grows as
O(NM2M ). The key enabler for our approach is
observing that conditionally on previous iterations
our proposal distribution, φ(xk)ψ(xk,xk−1), is de-
scribed by a chain. Sampling and calculating the
weights can be performed efficiently using FF/BS,
resulting in a complexity of O(NM2).

For a full derivation of the algorithm and dis-
cussions see the companion paper [4].

3 Experiments

We compare the proposed algorithm to the state-of-the-art Monte Carlo approximation
algorithm proposed in [3], in the sequel referred to as tree sampler. We display, for
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M = 60, the estimated mean square error (MSE) of the capacity in Figure 2a based
on 10 independent runs of the algorithms. The proposed SMC sampler performs very
well and on average has more than an order-of-magnitude smaller error than the tree
sampler.

To see how our proposed method scales with size M we fix the number of particles
N = 1000 and estimate the variance of log2(Ẑ) based on 20 independent runs for M ∈
{2, 4, . . . , 60}. The results seems to indicate that the variance scales approximately as
M3, see Figure 2b.
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Figure 2: a) C60 estimated MSE based on 10 independent runs of the SMC and tree
samplers. Plotted versus wall-clock time in loglog-scale. b) Estimated variance of the
SMC estimator log2(Ẑ) plotted versus square lattice size M .
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