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Abstract

Quality control is a process which is used to maintain the standards
of products produced or services delivered. The binomial distribution
is often used in quality control. The usual operation of the control
chart for the fraction of nonconforming units, or the p – chart, will be
extended by introducing a Bayesian approach. Control chart limits,
average run lengths and false alarm rates will be determined by using
a Bayesian method. A predictive distribution based on a Bayesian
approach will be used to derive the rejection region. The proposed
Bayesian method gives wider control limits than those obtained from
the classical method, and gives larger values for the average run length
and smaller values for the false alarm rate.

Keywords: Beta-binomial distribution; false alarm rate; p - chart;
run length.

1 Introduction

In this paper the control chart for the proportion of nonconforming units,
also known as the p - chart, will be studied. The binomial distribution is
often used in quality control. The proportion, p, denotes the proportion of
defective items in the population. Control chart limits, average run lengths
and false alarm rates will be determined by using a Bayesian method. These
results will be compared to the results obtained when using the classical
method. [1] states that attributes control techniques, such as p - charts,
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plot statistics related to defective items and call for corrective action if the
number of defectives becomes too large. [2] proposed a Bayesian approach
to obtain control charts when there is parameter uncertainty, using a pre-
dictive distribution to derive the rejection region. [2] assumed that the prior
information on p is a beta distribution, which means that the posterior dis-
tribution of p will also be a beta distribution. Let Xi, for i = 1, 2, . . . ,m,
follow a binomial distribution with parameters n and p. The proportion
of nonconforming items from sample i is defined as p̂i = Xi/n. Then p is
calculated, where p is the average of the sample proportions and is defined
as p =

∑m
i=1 p̂i/m. From [3] the classical control chart is defined as:

UCL = p+ 3

√
p(1−p)
n and LCL = p− 3

√
p (1− p)

n
.

For the Bayesian method, the predictive density will be used to determine
the control chart. From a Bayesian point, we have to decide on a prior for
this unknown value of p.

2 Prior, Posterior and Predictive Density

The beta prior is a conjugate prior to the binomial distribution. Consider a
beta prior, i.e. p ∼ Beta (a, b) for the unknown p

π (p) ∝ pa−1 (1− p)b−1 . (1)

For the p - chart the likelihood follows as

L (p |data) ∝ p

m∑
i=1

xi
(1− p)

mn−
m∑
i=1

xi
. (2)

Combining Equations 1 and 2 it follows that the posterior distribution
of p is a beta distribution, i.e.

π (p |data) ∝ p

m∑
i=1

xi+a−1
(1− p)

mn−
m∑
i=1

xi+b−1
. (3)

If the process remains stable, the control chart limits for a future sample
of n Bernoulli trials which results in T successes can be derived. Given n
and p, the unconditional prediction distribution of T is

f (T |data) =

(
n
T

) B

(
m∑
i=1

xi + a+ T,mn−
m∑
i=1

xi + b+ n− T
)

B

(
m∑
i=1

xi + a,mn−
m∑
i=1

xi + b

) (4)

for 0 ≤ T ≤ n, known as the beta-binomial distribution. It is assumed
that the sample size is the same for the posterior distribution and the
future sample. The predictive distribution in Equation 4 can be used to
obtain the control chart limits, where the rejection region is defined as
α =

∑
R?(α) f (T |data) .
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3 Simulation Study

In this simulation study the average run lengths and false alarm rates will
be compared using the classical and proposed Bayesian method. The run
length of a control procedure is the number of samples required before an
out-of-control signal is given. A good control procedure has a suitably large
average run length when the process is in-control and a small average run
length otherwise, from [4]. We will consider a number of different samples
sizes, n, and number of samples, m. For the classical method it is assumed
that p = 0.5 when determining the average run length and the false alarm
rate. For the Bayesian method, the value of p is of course unknown and
the prior distribution given in Equation 1 is used. Four different priors
were considered. For the simulation procedure, we randomly generated m
binomial random variables. The 3-sigma control chart limits were calculated
for the classical method. Followed by calculating the false alarm rate and
the run length, using the binomial distribution. For the Bayesian method,
the control chart limits were calculated using the predictive density with
α = 0.0027. Followed by calculating the the false alarm rate and the run
length, using the beta-binomial distribution. This was repeated 100 000
times, and then the average of the false alarm rates was calculated, and also
the average of the run lengths. From Table 1 we can see that in every single
case, the false alarm rate is lower for one of the Bayesian methods. For
the majority of the cases, the Bayesian method yielded a larger average run
length. Typically, one wants a smaller false alarm rate and a larger average
run length. For the Bayesian method, the false alarm rate is generally closer
to the nominal level of 0.0027.

Table 1: (a) Average run lengths and (b) average false alarm rates for dif-
ferent values of m and n.

Classical Bayes Bayes Bayes Bayes
B (0.5, 0.5) B (1, 1) B (3, 3) B (10, 3)

m = 2 & (a) 188.8749 338.0909 289.3581 309.4339 327.6048
n = 25 (b) 0.01832 0.00326 0.00364 0.00339 0.00335

m = 4 & (a) 259.1217 327.80139 317.3218 288.4798 323.5345
n = 25 (b) 0.00778 0.00328 0.00349 0.00377 0.00331

m = 4 & (a) 259.3864 341.1857 352.6781 339.7289 347.0327
n = 50 (b) 0.00708 0.00303 0.00295 0.00303 0.00295

m = 10 & (a) 408.9574 303.4763 303.9957 305.9098 321.7337
n = 20 (b) 0.00374 0.00388 0.00388 0.00385 0.00365

m = 2 & (a) 187.3209 358.9326 359.4457 363.4456 367.0650
n = 250 (b) 0.01424 0.00281 0.00280 0.00277 0.00274

m = 10 & (a) 328.6722 333.4760 331.1047 332.1746 339.1109
n = 50 (b) 0.00399 0.00309 0.00313 0.00312 0.00304
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4 Conclusion

The usual operation of the p - chart was extended by introducing a Bayesian
approach. We considered four different beta priors. We conclude that the
proposed Bayesian method gives wider control limits than those obtained
from the classical method. The Bayesian method generally gives larger
values for the average run length and smaller values for the false alarm rate.
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