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Abstract

Modeling fertility curves has attracted the interest of demographers for many
years. A variety of mathematical models have been proposed in demographic lit-
erature for modeling one-year the age specific fertility pattern of many population.
In this study, we proposed to use the Skew Normal Distribution to fit the fertility
schedules in Ethiopia, and showed that this proposed model is flexible enough for the
patterns vis-á-vis other models using AIC as a model selection criterion. Bayesian
hierarchical model through Gibbs sampler was then introduced under different prior
specifications for parameters estimation and uncertainty analysis. Examples using
simulated and application to the 2011 Ethiopian DHS fertility data are also consid-
ered for checking the validity of the proposed model.

Keywords: skew normal distribution; gibbs sampler; ASFR, fertility pattern,
fertility rate.

1 Introduction

The age-specific fertility rate (ASFR hereafter) curve, in general, is a bell-shaped uni-
modal curve which first rises slowly and then sharply in the age group 15-19, attains
its modal value somewhere between ages 20-29, declines first slowly and then steeply
till it approaches zero around the age of 50 years even though some countries has al-
ready started showing a deviation from this classical bell shaped curve.A large number
of models(namely: the Quadratic spline (QS), Cubic spline (CS), Beta function (BF),
Gamma function (GF), Hadwiger function (HF), Skew Normal (SN), Gompertez curve
(GC), Adjusred Error Model(AEM), Polynomial function (PF) and Model-1 of Peristera
et.al., etc) have been proposed in demographical litratures for modeling the one-year age
specific fertility curves of many populations, although fitting these models to curves of
Ethiopian data has not been undertaken yet.To accurately model fertility patterns in
Ethiopia, a mathematical model that is easily used, and provides good fit for the data
is required.In this study, we proposed to use the Skew Normal Distribution to fit the
fertility schedules, and in order to determine the performance of the proposed model,
we conducted some preliminary analysis of fitting the model alongside with ten other
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commonly used models stated above.The criterion followed in fitting these models is
the principle of nonlinear least squares.Results obtained from this preliminary analysis
reveal that the values of the AIC for the proposed model, SN, is lowest for majority, i.e.,
in 6 of the 11 regions considered. This shows that this model is better able to reproduce
the empirical fertility data of Ethiopia and its regions than the other existing models
considered.

The article is organized as follows. In Section 2, we first provide a brief description
of the skew-normal distributions and its properties. Section 3 is devoted to the deriva-
tion of the unconditional distribution of the parameters. We employ MCMC algorithm
with a latent variable within the Gibbs Sampler to generate samples in Section 2.4. We
perform some simulation studies to check the validity of our model in Section 3. In
Section 4, we present the application of the proposed hierarchical structure to Fertility
data of Ethiopia. Finally, we offer a brief discussion

2 Bayesian Inference

2.1 Scalar Skew Normal Distribution

The skew-normal(SN) distribution, formally first introduced by Azzalini (1985), at-
tracted a great deal of attention in the literature because of their flexibility in modeling
skewed data, mathematical tractability and inclusion of the normal distribution as a
special case. Thus, a random variable X is said to have a standard SN distribution,
denoted by X ∼ SN (α) distribution if the probability density function (pdf) is of the
form:

f (x;λ) = 2φ (x) Φ (αx) , x ∈ IR, α ∈ IR (1)

where φ and Φ denote the pdf and the cdf
of standard normal distribution, respec-
tively.One of the benefits of this distribution
is that the skewness can be introduced by a
single parameter α.This parameter controls
the shape of the distribution. For instance,
when α = 0, f (x;α) corresponds to the
standard normal distribution. Plots of the
univariate density (1) for α = −5,−2, 0, 2, 5,
given in Figure on the right, illustrate the
effects of changing α on the shape of the
density.
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In general, a more flexible random variable can be built by incorporating location and
scale parameters, ξ and ω, respectively such as Y = ξ + ωX, where X ∼ SN (α), and
this random variable Y is said to follow a skew normal distribution Y ∼ SN (ξ, ω, α) the
density of which is given as

f (ξ, ω, α) =
2

ω
φ

(
y − ξ
ω

)
Φ

(
α
y − ξ
ω

)
, y ∈ IR, ξ ∈ IR, ω > 0, α ∈ IR (2)

An alternative representation of the skew-normal that is especially popular in model-
ing Bayesian analysis is its stochastic representation given by (Azzalini, 1986; Henze,
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1986).The idea is if Z v T N [0,∞)(0, 1) and ε v N (0, 1) are independent, and δ ∈ (−1, 1),
then the stochastic representation for the skew normal random variable X is given by

X = δZ +
√

1− δ2 ε (3)

and that of Y = ξ + ωX is

Y = ξ + ωX = ξ + ω
(
δZ +

√
1− δ2ε

)
= ξ + ωδZ + ω

√
1− δ2ε (4)

with δ = α√
1+α2

2.2 Hierarchical Bayesian Models

Considering the stochastic representation given above, the Hierarchical Bayesian struc-
ture for the univariate skew normal model is

Yi|Zi, ξ, ω, α v N
(
ξ + ωδZi, ω

2(1− δ2)
)

;

Zi ∼ N[0,∞) (0, 1) , i = 1, . . . , n;

ξ ∼ N
(
µξ, δ

2
ξ

)
;

ω2 ∼ Inverse−Gamma (a, b) ;

α ∼ N
(
µα, δ

2
α

)
(Case− 1);

α ∼ SN (ξo, ωo, αo) (Case− 2)

(5)

where µξ, µα, ξo, αo ∈ IR and a, b, δ2ξ , δ
2
α, ωo > 0 are hyperparameters of the model.even

though the direct derivation of the marginal posterior of the parameters is complicated,
the Gibbs Sampler can be used to generate the samples of the posterior.In order to
implement the Gibbs sampler, we will use the data augmentation techniques.In order
to benchmark the performance of the model, data will be simulated and examined.
Posterior inference may also be highly dependent on the choice of the prior. We will also
perform a sensitivity analysis on the parameters distribution.
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