
A Bayesian Model to Approximate ∆T for Semiconductor

Cyclic Stress Testing

Olivia Bluder1, Kathrin Plankensteiner1

—————————————————————————————————
Second Bayesian Young Statisticians Meeting (BAYSM 2014)

Vienna, September 18–19, 2014
—————————————————————————————————

1 KAI - Kompetenzzentrum für Automobil- und Industrieelektronik GmbH, Villach, Austria
<olivia.bluder,kathrin.plankensteiner>@kai.at

Abstract

In this work a Bayesian model to approximate the temperature rise in a semi-
conductor device during cyclic stress testing is presented. A known relationship is
extended to different DMOS areas and prior knowledge on the model parameters
from literature, experts, known physical relations and already available data from
previous technologies is included. The analysis of the sampled posterior distributions
indicate good model quality and, compared to least squares parameter estimates,
the posterior means are more reliable from a physical point of view.
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1 Introduction

Temperature is one of the driving forces that causes device failure at semiconductor
cyclic stress testing. During a stress pulse the device heats up and cools down within
milliseconds. Hence, beside the ambient temperature, the temperature rise within one
stress pulse (∆T ) is of key interest for the generation of a reliable lifetime model. Devices
with an integrated temperature sensor exist, but its construction implies a change in the
structure and a dislocation of the hottest spot, therefore it is not possible to measure
the maximum ∆T of the semiconductor device. Alternatively, electro-thermal Finite
Element (FEM) simulations [1] are performed based on detailed device models. Since
the time effort for these simulations is especially high for devices with big DMOS areas,
we propose to use an approximation formula for ∆T .

2 Approximation for ∆T

Glavanovics and Zitta[2] showed that ∆T for a stress pulse can be approximated by the
following formula

∆T = Tdest − Tamb = kth · Pmax · tNp , (1)

where Tamb is the ambient temperature, Pmax is the maximum power of the stress
pulse and tp is the pulse width. Tdest (destruction temperature), kth and N are fitting
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parameters which can be estimated based on the results from Energy Ramp Up (ERU)
tests. With Equation 1, the reached ∆T s for different stress pulses during cyclic stress
testing can be calculated and used to predict the lifetime of the semiconductor device.
In general, it is assumed that Tdest is the same for devices with the same metal structure
and kth scales with the DMOS area, but data analysis shows that also N depends on
the DMOS area, hence Equation 1 is extended to

∆T = Tdest − Tamb = C ·AN1 · Pmax · t−N2·AN3+1
p , (2)

Since measured temperatures of a stress pulse are not available but the energies via
the power and pulse width (E = 1/2 · Pmax · tp), the energy is used as the output

E =
1

2
· (Tdest − Tamb) · C−1 ·A−N1 · Pmax · tN2·AN3

p . (3)

This implies that posterior distributions for θ = (Tdest, C,N1, N2, N3, σ
2) are of inter-

est. Prior knowledge from literature, experts, known physical relationships and already
available data from previous technologies is available for Tdest, C, N1 and N2 ·AN2 + 1.
This information is included via normal, uniform and inverse gamma prior distributions
are used for Tdest, C, N1, σ

2 and a hierarchical prior for N3|N2. The measured energies
follow a normal distribution, since only white noise is assumed as a disturbing factor.
Therefore the joint posterior distribution is defined as

p(θ|E) ∝ P (E|θ) · P (Tdest) · P (C) · P (N1) · P (N3|N2) · P (N2) (4)

Equation 3 cannot be linearized by a logarithmic transformation and P (N2, N3) is a
hierarchical normal prior, therefore no analytical solution for the posterior distributions
exists. We apply a slice sampling algorithm[3] to sample from the posterior distributions.
The analysis of the results show that the Bayesian posterior distributions are more robust
compared to a least squares point estimation. Additionally, from a physical point of view,
the posterior means are the more reliable parameter estimates.
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