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Abstract

The contribution deals with the dynamic decentralized distributed estimation of
mixture models, exploiting the consistent Bayesian paradigm. A stochastic multi-
modal process of interest is observed and modelled by a network (i.e., directed or
undirected graph) of nodes (vertices); the edges define the information-sharing pos-
sibilities. The additive noise, corrupting the process outcomes, is vertices-specific.
Exploiting the shared knowledge of observations and/or posterior distributions, the
aim is to arrive at the best estimates of the employed mixture model. Our contri-
bution focuses on components’ parameters and weights.
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1 Introduction

The problem of the dynamic distributed estimation of various model types has attained
a considerable attention in the last decade, particularly due to the rapid development of
wireless ad-hoc networks, sensor networks and the emergence of the so-called big data
phenomenon, e.g. [3] and many others. The underlying models comprise mostly the
least-squares ones, for instance, the recursive least squares (RLS) [1], least mean squares
(LMS) [7, 11] and Kalman filters [2, 8, 10]. The mixture models are covered, e.g., in [9]
(EM algorithm) and [6] (Gaussian mixture Bernoulli filter).

Despite the great potential of the Bayesian paradigm in this field, its adoption is
rather an exception than a rule. From the probabilistic viewpoint, the resulting “clas-
sical” (that is, non-Bayesian) algorithms often suffer statistical inconsistencies. For in-
stance, the point estimators are often fused without reflecting their statistical properties,
which may lead to statistically-absurd situations. The first author’s work [4] aims to
partially fill this gap. It proposes a fully Bayesian approach to decentralized distributed
estimation with a fusion based on minimization of the Kullback-Leibler divergence. The
present contribution extends the results to the case of mixture models.
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2 Distributed Estimation

Let us assume a spatially distributed network, represented by an directed or undirected
graph of N vertices (nodes, denoted i), where the edges define which vertices may share
information. The vertices observe noisy outcomes yi,k of a single stochastic process; k =
1, 2, . . . stand for time indices. The observations yi,k, possibly corrupted by some additive
vertices-specific noise, generally obey a mixture distribution with K components, each
having latent parameters θi,k, k = 1, . . . ,K. That is, each node i exploits a model of the
form

pi(yi,k|φi, θi) =
K∑
k=1

φi,kpi,k(yi,k|θi,k), k = 1, 2, . . . , i = 1, . . . , N,

where p denote the components – the conditional probability density functions, and φi,k
are weights (probabilities) of these components, taking values on a unit K-simplex. The
goal is to collectively estimate the weights and the components’ parameters from the
dynamically incorporated observations yi,k, exploiting the theory of Bayesian mixture
estimation of Titterington [12] and Frühwirth–Schnatter [5]. The shared information
relates either to the observations, the posterior distributions, or both. Furthermore, the
imposed communication restrictions prohibits iterations among nodes: any information,
once obtained, is directly incorporated.

From a vertice’s viewpoint, a set of models and/or posterior distributions is available
from the other (reachable) network nodes. The elements of this set have to be merged
together, preferably resulting in a single model and/or posterior distribution, closest
to the set elements in the statistical sense. That is, we search for such a probability
distribution function p∗i , whose Kullback-Leibler divergence D from all others is minimal,

αijD(p∗i ||pj) → min, αij ∈ [0, 1] s.t.
∑
j

αij = 1.

Here, αij are weights assigned by the vertice i to its peers j, reflecting the degree of
belief in their information.

This type of approximation can be used both for the models and the posterior distri-
butions. Naturally, there is also the other order of the divergence arguments. It can be
shown, that (i) the results coincide provided the (ideal but rather unexpected) statistical
homogeneity of the vertices, (ii) the chosen order has a consistent interpretation of the
Wang and Zidek’s weighted likelihood [13] and (iii) is has appealing consequences for
the exponential family distributions and their conjugate prior distributions.
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