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Abstract

In bivariate meta-analyses the number of studies involved is often low and data
are sparse, so that model fitting using likelihood approaches can be problematic and
Bayesian approaches are advantageous. Bayesian inference became attractive for
routine use after the proposal of integrated nested Laplace approximation (INLA).
However, the assignment of suitable prior distributions for the covariance matrix of
the bivariate random effects has been still challenging. Here we show how to apply
the recently proposed framework of penalised complexity priors to the variance com-
ponents and the correlation parameter. The priors obtained are more interpretable
and can be intuitively specified. The methodology is integrated in the user-friendly
R-package meta4diag built on top of INLA.

Keywords: bivariate random effects; integrated nested Laplace approximation
(INLA); interpretable prior distribution;

1 Introduction

A diagnostic test usually presents two-by-two tables from which pairs of sensitivity
and specificity can be computed. A bivariate meta-analysis summarises the results
from separately performed studies while keeping the two-dimensionality of the data [5].
Since the number of studies is often small and data may be sparse, maximum likelihood
estimation can be challenging. Paul et al. [4] proposed to perform full Bayesian inference
using integrated nested Laplace approximations (INLA) [6]. Harbord [2] noted that
INLA has considerable promise to be used in routine analysis, but that it is hard to
specify suitable prior distributions.

Recently, a new concept for constructing priors was proposed, which uses that many
model components are nested within a natural base model [3]. A prior distribution is
consequently defined on the distance between the flexible and the base model, and then
transformed to the original parameter. Here, we apply this approach to derive sensible
and interpretable prior distributions. To make the methodology available to the applied
scientist we present a purpose-build R-package on top INLA.
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2 Bivariate Model

Let TP, FP, TN and TN denote the number of true positives, false positives, true neg-
atives, and false negatives, respectively. Further, let Se = TP/(TP + FN) be sensitivity
and Sp = TN/(TN+FP) specificity. A bivariate model summarises the results of several
diagnostic tests i = 1, . . . , I by modelling sensitivity and specificity jointly:

TPi|Sei ∼ Binomial(TPi + FNi,Sei), logit(Sei) = µ+ Uiα+ φi,

TNi|Spi ∼ Binomial(TNi + FPi,Spi), logit(Spi) = ν + Viβ + ψi,(
φi
ψi

)
∼ N

[(
0
0

)
,

(
σ2φ ρσφσψ

ρσφσψ σ2ψ

)]
,

where µ, ν are intercepts for logit(Sei) and logit(Spi), respectively, and Ui, Vi are possi-
bly available covariates vectors. The covariance matrix of the random effects parameters
φi and ψi is parameterised using between-study variances σ2φ, σ2ψ and correlation ρ [1].

An equivalent parameterisation uses precisions τφ = 1/σ2φ and τψ = 1/σ2ψ.

3 Choice of Prior Distributions

Mainly vague or mildly informative priors for τφ, τψ and ρ, or the whole covariance
matrix are used. Habord [2] proposed to use a stronger prior for ρ which is possibly
not symmetric around zero and centered around a natural ρ0 instead of zero. Penalised
complexity (PC) priors allow for such a specification [3]. Consider the bivariate random
effects model and let

Σ0 =

(
1 ρ0
ρ0 1

)
Σ1 =

(
1 ρ
ρ 1

)
denote the covariance matrix of the natural base and flexible model, respectively (as-
suming τφ = τψ = 1). The increased complexity between N (0,Σ1) and N (0,Σ0) is
measured by the Kullback-Leibler discrepancy (KLD). A constant rate penalisation of
the distance d(ρ) =

√
2KLD(ρ) results in an exponential prior with parameter λ. The

rate λ is determined from knowledge of the scale or some interpretable contrast of ρ, such
as Prob(|ρ| > U) = 0.01, where U is a user-provide scale. Figure 1 shows the resulting
prior for ρ for different values of λ and ρ0. Priors for τφ and τψ follow analogously.
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Figure 1: Prior density for ρ. Left: PC prior with ρ0 = 0 and different values of λ.
Right: PC prior with different values for ρ0 and λ = 2.
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4 R Package meta4diag

With our R-package meta4diag model and prior specification are straightforward, and
standard outputs are directly available. Figure 2 shows an exemplary summary plot of
a fitted model.
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Figure 2: Summary plot from meta4diag: Gray circles denote study based estimates
with diameter proportional to the study size. The square is the summary estimate and
the black solid, black dashed and gray dashed line represent a summary ROC curve,
95% credible region and 95% prediction region, respectively.

5 Discussion

We proposed to use the novel PC priors for bivariate meta-analysis. These priors are
easily interpretable and can be intuitively specified. First results of a simulation study
indicate better performance of the new priors compared to alternative specifications.
The whole methodology will be available via our novel R-package meta4diag.
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