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Abstract

Testing for differences between 2 groups is a fundamental problem in statistics
and due to developments in Bayesian nonparametrics there is renewed interest in
this problem. Here we describe a new class of tests use the connection between the
Dirichlet process prior and the Wilcoxon rank sum test but extends this idea to the
Dirichlet process mixture model. Given consistency results for this class of models
we develop tests that have appropriate frequentist sampling procedures but have the
potential to outperform the usual frequentist tests. Extensions to interval and right
censoring are considered and an application to a high dimensional data set obtained
from a metabolomics investigation demonstrates the practical utility of the method.
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1 Introduction

While the problem of testing for differences between 2 groups has a long history, the
development of new approaches to inference has created opportunities to improve on
these existing approaches. In this paper we use the connection between the Dirichlet
process and Wilcoxon’s test to explore methods for testing between 2 groups. We con-
sider 2 ways to exploit this connection: one relying on the Dirichlet process prior and
one relying on the Dirichlet process mixture prior. In this way we develop a Bayesian
counterpart to the Wilcoxon rank sum statistic and the weighted log rank statistic for
right and interval censored data.

2 Description of the test

Ferguson (1973) [2] noted that if X is a random variable with iid realizations X1, . . . , Xn

and Y is another random variable with realizations Y1, . . . , Ym and one seeks to estimate
P (X ≤ Y ), then if one uses independent Dirichlet process priors for the 2 probability
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distributions that gave rise to the samples, denoted FX and FY , the Bayes estimate of
P (X ≤ Y ) given the data has the simple form∫

F̂X(t) dF̂Y (t), (1)

where F̂X(t) is the Bayes estimate of FX and F̂Y (t) is defined analogously. This expres-
sion forms the basis for the tests we propose. Briefly, we suppose a random distribution G
on (R,B(R)) is uncertain and generated by a Dirichlet process, G ∼ D(αG0). However,
rather than just using a Dirichlet process prior we also explore the use of a Dirich-
let process mixture prior. Our test is based on computing 95% credible intervals for
P (X ≤ Y |X1, . . . , Xn, Y1, . . . Ym) and if the lower bound of this interval exceeds 0.5 or
the upper bound is below 0.5 the test rejects the hypothesis that there is no difference
between the groups. We call this class of tests extended Ferguson tests (EF). The pres-
ence of any kind of censoring poses no problems in the context of our MCMC algorithm
as the censored values are sampled from their full conditionals.

3 Simulation studies

3.1 Fully observed data

For the case where there is no censoring we compare our EF test to the Wilcoxon rank
sum test. For scenarios with censoring we compare the proposed method to the log-rank
test. We apply the computation algorithm in Escobar and West (1995) [1] and also
include the acceleration step discussed in Müller and McEachern (1999)[3] [5].

Similarly, we assume the normal/inverse-gamma model and generate data from nor-
mal distribution, Student t distribution and binomial distribution. Here we only list the
result for normally distributed data.

n = 25 n = 100 n = 500
δ EF Wilcoxon EF Wilcoxon EF Wilcoxon

0.00 0.070 0.050 0.057 0.049 0.052 0.050
0.25 0.081 0.059 0.142 0.129 0.534 0.519
0.50 0.168 0.123 0.437 0.413 0.978 0.977
0.75 0.306 0.252 0.765 0.742 1.000 1.000
1.00 0.462 0.415 0.944 0.930 1.000 1.000

Table 1: Simulation results using the Gaussian base measure and data that is distributed
according to the Gaussian distribution

For Gaussian distributed data, the result suggests that the proposed EF test obtains
an approximately 4% greater power than the Wilcoxon. The result of the other two
cases suggests that while with small sample size the proposed EF test has greater power,
the Wilcoxon test is comparable to the EF test when the two groups have more data
points and larger differences between their means.

3.2 Right censored data

When there is censoring we use the rejection sampling technique described in Kuo and
Mallick (1997)[4]. This makes extending the approach from the previous section straight-
forward. Results are shown in Table 2.
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n = 25 n = 100 n = 500
δ EF Log-rank EF Log-rank EF Log-rank

0.00 0.079 0.044 0.086 0.060 0.067 0.052
0.25 0.094 0.066 0.201 0.116 0.475 0.363
0.50 0.161 0.109 0.395 0.276 0.904 0.861
0.75 0.244 0.167 0.637 0.532 0.995 0.993
1.00 0.332 0.266 0.814 0.755 1.000 1.000

Table 2: Simulation results using the Gaussian base measure and data that is distributed
according to Gaussian distribution with 50% censoring.

Thus the proposed approach has superior power in the presence of censoring too.

4 Discussion

We have demonstrated that using existing methods for the analysis of the DPM model
we can develop tests analogous to the Wilcoxon rank sum test and that these Bayesian
alternatives have superior power under a wide range of conditions. Future work will
explore the connection between these tests and semiparametric alternatives using the
well established connections between frequentist semiparametric inference and the log
rank test.
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