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Abstract

Under the Bayesian framework, we develop a novel method to assess the goodness
of fit for the SIR (Susceptible→ Infective→ Removed ) stochastic epidemic model.
This method seeks to determine whether or not one can identify the infectious period
distribution based only on a set of partially observed data using a posterior predictive
distribution approach. Our criterion for assessing the model’s goodness of fit is based
on the notion of Bayesian residuals.

Keywords: Epidemic models; Goodness of fit; Posterior predictive distribution;
Bayesian residual.

1 Introduction

Poor fit of a statistical model to data can result in suspicious outcomes and misleading
conclusions. Although the area of parameter estimation for stochastic epidemic models
has been a subject of considerable research interest in recent years (see e.g.[1], [2] and [3]),
more work is needed for the model assessment in terms of developing new methods and
procedures to evaluate goodness of fit for epidemic models. Therefore, it is of importance
to seek a method to assess the quality of fitting a stochastic epidemic model to a set
of epidemiological data. The most well-known stochastic model for the transmission
of infectious diseases is considered, that is the SIR (Susceptible - Infective - Removed)
stochastic epidemic model. We recall methods of Bayesian inference using Markov chain
Monte Carlo (MCMC) techniques for the SIR model where partial temporal data are
available. Then, a new simulation-based goodness of fit method is presented. This
method explores whether or not the infectious period distribution can be identified based
on removal data using a posterior predictive model checking procedure.

2 Model, Data and Inference

We consider a Susceptible-Infective-Removed (SIR) stochastic epidemic model in which
the infection rate at time t is given by βn−1X(t)Y (t), where X(t) and Y (t) represent the
number of susceptible and infective individuals at t in a closed homogeneous population
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of size N = n + 1, which consists of n initial susceptibles and one initial infective,
and β denotes the infection rate parameter. Following [4] and [5], let fTI (·) denote the
probability density function of TI (the length of infectious period, which is assumed
to be a continuous random variable) and let θ indicate the parameter governing TI .
Also, define I = (I1, ..., InI ) and R = (R1, ..., RnR), where Ij and Rj are the infection
and removal times of individual j and where it is assumed that the total number of
infections and removals are equal, that is nI = nR. Assuming a fully observed epidemic
(complete data) with the initial infective labelled κ such that Iκ < Ij for all j 6= κ, the
likelihood of the data given the model parameters is

L(I,R|β, θ, κ) =

 nI∏
j=1,j 6=κ

βn−1Y (Ij−)

 · exp
(
−βn−1A

)
·
nR∏
j=1

fTI (Rj − Ij) ,

where A =
∑nI

j=1

∑N
k=1(Rj ∧ Ik − Ik ∧ Ij) with Ik =∞ for k = nI + 1, ...,N .

Unfortunately, incomplete data (where we observe only removal times) are the most
common type of epidemic data. As a result, the likelihood of observing only the removal
times given the model parameters is intractable. One solution to make the likelihood
tractable is to use the data augmentation technique by treating the missing data as extra
(unknown) parameters [1]. For instance, let TI ∼ Exp(γ), where γ is referred to as the
removal rate. By adopting a Bayesian framework and assigning conjugate gamma prior
distributions for the model parameters [1], that are β ∼ Gamma(λβ, νβ), (with mean =
λβ/νβ) and γ ∼ Gamma(λγ , νγ), we get the following marginal posterior distributions:

β|γ, I,R ∼ Gamma
(
λβ + nI − 1, νβ + n−1A

)
,

γ|β, I,R ∼ Gamma

λγ + nR, νγ +

nR∑
j=1

(Rj − Ij)

 ,

as well as

π(I|β, γ,R) ∝

 nI∏
j=1,j 6=κ

Y (Ij−)

 · exp
(
−βn−1A

)
·
nR∏
j=1

exp (−γ(Rj − Ij)) .

The model parameters β and γ can be updated using Gibbs sampling steps as they
have closed form of the posterior distributions. However, the infection times need to be
updated using a Metropolis-Hastings step. Having done that, we can obtain samples
from the marginal posterior distributions of the model parameters.

3 Methodology

We are concerned with identifying the infectious period distribution of the SIR model
based only on removal data. In the SIR stochastic epidemic model, regardless of the
type of infectious period distribution (we consider Exponential, Gamma and Constant),
the total population size is constant and satisfies N = X(t) + Y (t) + Z(t), where Z(t)
denotes the number of removed individuals at event time t with X(0) ≥ 1, Y (0) ≥ 1 and
Z(0) = 0; note that Z(s) ≤ Z(t) for any 0 ≤ s ≤ t; s, t ≥ 0.
However, due to the fact that epidemic data are partially observed it is sufficient for our
purpose to consider only the times when removals occur instead of looking at all event
times. Assuming that all infected individuals are removed by the end of the epidemic,
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the behaviour of the three models in terms of Z(r1), Z(r2), ..., differs, where rj represents
the j-th removal time.
We turn our attention to take advantage of this difference to distinguish between these
three models when fitting them to data in the case of partial observations. Let Robs and
Rrep denote the observed and replicated removal times respectively, then our proposed
method can be generally described by the following algorithm.

Algorithm 1 Generic algorithm for our method

1. Given Robs, fit an SIR model using MCMC to get π(β|Robs) and π(θ|Robs).
2. Draw βi ∼ π(β|Robs) and θi ∼ π(θ|Robs), i = 1, ...,M .
3. Use βi and θi to draw samples from π(Rrep i|Robs) conditioning on nrep iR = nobsR .
4. Compare Robs to π(Rrep i|Robs).

4 Illustration

To illustrate our method, 92 removal times were simulated from an SIR model in which
TI ∼ Exp(0.5) and β = 1.5 in population of size N = 100, that consists of n = 99 initial
susceptibles and one initial infective, then our procedure was applied (see Figure 1). By
looking at Figure 1, it is clearly noticeable that the observed data fit very well within
the predictive distribution of the exponential SIR model, the model that has generated
the data.

Figure 1: Comparison of the predictive distribution for the three models where dotted line
indicates the observed data and solid line represents the predictive mean conditioning on the
observed final size.

As mentioned above, our preferred criterion to measure the goodness of fit is the
Bayesian residual [6], that is, conditioning on nrep iR = nobsR ,

dj = Robsj − E(Rrep ij |Robs), j = 1, ..., nR,

where E(Rrep ij |Robs) =
∫
Rrep ij π(Rrep ij |Robs) dRrep ij ≈ 1

M

∑M
i=1R

rep i
j .

It is worth mentioning here that the quantity
∑nR

j=1 d
2
j could provide an overall mea-

sure of fit. Figure 2 shows the the Bayesian residual distributions for the three mod-
els in which it is qualitatively obvious that there is a high density accumulated near
zero, coming from the exponential SIR model, compared to the other two models. On
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the top of that, quantitatively, the sum of the squared Bayesian residuals
∑nR

j=1 d
2
j are

101.03, 1256.55 and 8501.78 for the exponential, gamma and constant SIR models re-
spectively. Therefore, as expected, the exponential SIR model, from which the data was
generated, has the smallest value.

Figure 2: The Bayesian residual distributions of the three SIR models.

5 Conclusion

Bayesian inference for the SIR model has been introduced where the epidemic outbreak is
partially observed. We have proposed a method to assess the goodness of fit for the SIR
stochastic model based only on removal data. A simulation study has been performed
to test the proposed method. Using the posterior predictive assessment for checking
models, this diagnostic method is seen to identify the true model reasonably well.
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