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Abstract

Marginal likelihood estimation based on importance sampling from the product
of the marginal posterior distributions is presented. The approach is applicable to
multi-block parameter vector settings, does not require further Markov Chain Monte
Carlo (MCMC) sampling and is not dependent on the type of MCMC scheme used to
sample from the posterior. The proposed estimator is applied to a normal regression
problem and is compared to other common estimators.

Keywords: importance sampling; marginal likelihood estimation; posterior fac-
torization; Rao-Blackwellization

1 Introduction

The marginal likelihood of a given model Mk with parameter vector θk is the normalizing
constant of the posterior p(θk|y,Mk), obtained by integrating the likelihood function
l(y|θk,Mk) with respect to the prior π(θk|Mk), i.e.

m(y|Mk) =

∫
l(y|θk,Mk)π(θk|Mk)dθk. (1)

Marginal likelihood estimation is essential to Bayesian model selection as it is associ-
ated with the evaluation of Bayes factors and posterior model odds [4]. A large body of
literature is focused on “direct” estimation methods which utilize the posterior samples
of separate models [1, 2, 3, 5, 7, 9]. In this paper we present an importance sampling
approach which utilizes block factorizations of the posterior distribution [10].

2 The proposed estimator

Consider a two-block setting where l(y|θ,φ) is the likelihood of the data (dropping
the depencency to Mk) conditional on parameter vectors θ = (θ1, θ2, ..., θp)

T and φ =

1



(φ1, φ2, ..., φq)
T . The idea is to use the product of the marginal posterior distributions

as importance sampling density g, i.e. g(θ,φ) ≡ p(θ|y)p(φ|y). Under this approach

m(y) =

∫ ∫
l(y|θ,φ)π(θ,φ)

p(θ|y)p(φ|y)
p(θ|y)p(φ|y)dθdφ, (2)

which can be estimated as

m̂(y) = N−1
N∑

n=1

l(y|θ(n),φ(n))π(θ(n),φ(n))

p(θ(n)|y)p(φ(n)|y)
. (3)

Note that θ(n),φ(n), for n = 1, 2, ..., N , are draws from the marginal posterior distri-
butions p(θ|y) and p(φ|y) and not from p(θ,φ|y); nevertheless, forming a sample from
the product marginal posterior can be easily implemented by systematically permuting
the sampled values of θ or of φ. Extending (3) to multi-block parameter settings is
straightforward, while calculating the variance of the estimator can be handled through
standard MCMC based methods.

The estimator in (3) is the optimal importance sampling density when θ and φ are
independent a-posteriori, since in this case p(θ|y)p(φ|y) = p(θ,φ|y) leading to the zero-
variance estimator. Although posterior independence is not frequently met in practice,
the product marginal posterior can serve as a good approximation; first it has the same
support as the joint posterior and second the blocking can be such that the blocks
are close to orthogonal regardless whether the elements within θ and φ are strongly
correlated.

The marginal probabilities in the denominator of (3) can be calculated through
moment-fitting approximations or kernel methods, while for cases of Gibbs sampling
one can evaluate Rao-Blackwell estimates as

p̂(θ|y) = L−1
L∑
l=1

p(θ|φ(l),y), (4)

p̂(φ|y) = L−1
L∑
l=1

p(φ|θ(l),y), (5)

for a sufficiently large subsample of size L < N from the joint posterior.

3 Example

The data concern 25 direct current (DC) electric charge measurements (volts) and wind
velocity measurements (miles/hour) [6]. The models under consideration are;

i) M0: the null model with the intercept,

ii) M1: intercept+(x1 − x1),
iii) M2: intercept+(x2 − x2) and

iv) M3: intercept+(x1 − x1)+x21,
where x1 is wind velocity and x2 is the logarithm of wind velocity. Let j denote the
model indicator, i.e. j = 0, 1, 2, 3. The likelihood and prior assumptions are the following

y|βj , σ
2
j ∼ N (Xjβj , Ijσ

2
j )

βj |σ2j ∼ N (0,Vjσ
2
j )

σ2j ∼ IG(10−3, 10−3)
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where y is the vector of electric charge data, βj and Xj correspond to the regression

vector and design matrix of model j, respectively, and Vj = n2(XT
j Xj)

−1 with n = 25.

In relation to the context of Section 2 this is a 2-block setting where β ≡ θ and σ2 ≡ φ.
Under this conjugate design the marginal likelihoods can be calculated analytically.

Estimator
Model

M0 M1 M2 M3

Importance-weighted log m̂(y)Chen -34.8815 -13.1407 -1.5979 -2.2277
(0.0029) (0.0039) (0.0031) (0.0068)

Candidate’s log m̂(y)Chib -34.8789 -13.1420 -1.5962 -2.2337
(0.0020) (0.0028) (0.0023) (0.0067)

Optimal bridge-sampling log m̂(y)obs -34.8807 -13.1412 -1.5979 -2.2294
(0.0011) (0.0019) (0.0022) (0.0030)

Proposed method

Exact marginals log m̂(y)mp -34.8786 -13.1420 -1.5932 -2.2302
(0.0023) (0.0035) (0.0030) (0.0030)

Rao-Blackwellization log m̂(y)RB -34.8782 -13.1405 -1.5919 -2.2280
(0.0023) (0.0030) (0.0030) (0.0033)

Target value logm(y) -34.8797 -13.1429 -1.5953 -2.2270

Table 1: Estimated marginal log-likelihood values compared with true values; average
batch mean estimates (MC errors in parentheses) are presented using 30 batches of size
300.

Estimator (3) is calculated considering: i) the true marginals p(βj |y), p(σ2j |y) and ii)

Rao-Blackwell estimates of p(βj |y), p(σ2j |y) from reduced samples of 200 draws. The two
variants are denoted by m̂(y)mp and m̂(y)RB, respectively. We also consider the following
estimators: importance-weighted [1], candidate’s [2] and optimal bridge-sampling [5]; the
three additional estimators are denoted by m̂(y)Chen, m̂(y)Chib and m̂(y)obs, respectively.
Results, based on 9000 posterior draws, are summarized in Table 1; as seen the proposed
estimators yield comparable estimates to the other three methods with MC errors lower
than those of m̂(y)Chen and just slightly higher than those of m̂(y)obs.

4 Discussion

The performance of the proposed estimator depends on; i) the efficiency of approximat-
ing the joint posterior through block factorizations and ii) the accuracy in estimating
marginal posterior densities. The first issue can be addressed with appropriate blocking
or reparameterizations which will lead to near-orthogonal blocks. The second issue can
be dealt with Rao-Blackwellization for Gibbs sampling settings and with moment-fitting,
kernel methods or more elaborated strategies [8] for other MCMC schemes.
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