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Abstract

The Zellner’s g-prior, and its extensions for generalized linear models (GLMs),
is a popular choice in the variable selection context. This prior can be expressed as
a power-prior with fixed set of imaginary data. We assign an extra hierarchical level
that introduces uncertainty for the imaginary data under the g-prior design, by bor-
rowing ideas from the power expected posterior priors. For variable selection on nor-
mal regression models, the resulting power-conditional-expected-posterior (PCEP)
prior is a conjugate normal-inverse gamma prior, which provides a consistent variable
selection method and gives more weight to parsimonious models than the Zellner’s
g-prior. Moreover, we will try to extent this methodology for GLMs and examine
possible connections with hyper-g priors.

Keywords: power expected-posterior priors; objective model selection methods;
power prior; training sample; unit-information prior.

1 The role of imaginary data in g-priors

Let us consider a set of imaginary data y* = (y%,5,...,y% )7 of size n*. Then, for any
model my with parameter vector 8y, likelihood f(y*|@¢,m¢) and baseline prior wév(ae),
we can obtain a “sensible” prior for the model parameters from

Te(0ely*; 0) o f(y*|0e,me) °m} (8y). (1)

This is the power-prior introduced by Ibrahim and Chen [3]. The parameter § controls
the weight that the imaginary data contribute to the “final” posterior distribution of
0. For § =1, (1) is exactly equal to the posterior distribution of 6, after observing the
imaginary data y*. For § = 1/n* the contribution of the imaginary data to the overall
posterior is equal to one data point; i.e. a prior having a unit-information interpretation
[4].

We focus on variable selection problems for GLM’s, i.e. for any model my with
parameters 8, = (5o, 3;,¢) and response data y = (y1,...,yn)? with likelihood given
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where X, is a n x dy design matrix and g o &’~!() is the inverse function of g o ¥'(¥) =
g(b’ (79)), ¥; and ¢ are the location and dispersion parameters of the exponential family,
respectively, a(), b(), ¢() are functions specifying the structure of the distribution, and
g() is the link function connecting the mean of Y; with the linear predictor.

Under the power-prior approach for the regression coefficients 3, given Sy, ¢, with

7 (BqlBo, d) o< 1
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where ,/E:}Z is the MLE of B, for data y*, fn,(y; p,X) denotes the d-dimensional normal
distribution with mean p and variance-covariance matrix ¥ and H = diag(h;) with

h;1 — <8g Mi ) (qbz)b”( )
Assuming that y* = ¢g=1(0)1,, and that a(¢;) = ¢/w; (with w; being a known fixed
weight), we have

7e(Belo® y":0) = f,, (Bes 0.6¢(X{TWX;) o)),
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where W = diag(w;) and ¢ = [8%%1') M-:o} V(g ot ~1(0)). Thus, Zellner’s g-prior can

be interpreted as a power-prior on imaginary data.

2 Power-conditional-expected posterior (PCEP) priors

We implement the PCEP prior for the regression coefficients 3, conditionally on 3y and
¢; see for details in [1]. The conditional expected posterior (CEP) prior is

75 EP By, Bo, @) = 7§ FP (B4l Bo, @) (Bold)my (¢) (2)

with
CBP (B, 5o, 6) = / 7 (BelBo, &,y ("o, &)™ 3)

This prior is actually the same as the expected posterior prior of Perez and Berger [5]
conditional on fy and ¢. Similar to the power-expected posterior prior [2], we construct
the PCEP prior by raising the likelihood, involved in (3), to a power 1/§ that controls
the effect of the training sample in the PCEP prior. Thus,

my CE(By, o, #:6) = w) P (By|Bo, 3 0)7) (Bo, )
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where

Fy*| By, Bo, ;)7 (B | Bo, &)

77" (Bl Bo, ¢, y*; 6) = my (y*| Bo, ¢; 6)
] g

(5)



with f(y*| B,, Bo, ¢:6) o f(y*|By,Bo,d)"/° being the density-normalized power likeli-
hood. Moreover, mév (y*|Bo, ¢; 9) is the prior predictive distribution, evaluated at y*, of
model my given By, ¢ with the power likelihood under the baseline prior 7rév (B¢ | Bo, ®)-

Hence, 7“F (B, Bo, ¢;6) in (4) can be considered as a mixture of g-priors where
a hyper-prior is now placed on the random imaginary data y* rather than the variance
multiplicator g (which is here substituted by §). The method is more parsimonious than

the hyper-g and the g-prior and it is illustrated using a simple example.

3 Illustration: The crime data-set

Here, we provide results for a normal regression example where the PCEP results in a
conjugate Normal-inverse-gamma set-up [1]. The data concern crime rates for 47 states
and include 15 explanatory variables [6]. The response variable is the rate of crimes in
a particular category per head of population. All variables, including the response and
excluding the indicator covariate (X2), have been initially log-transformed and then all
variables have been centered.

With p = 15 covariates we were able to contact a full enumeration search. Posterior
marginal inclusion probabilities, are presented in Table 1. All four methods (PCEP, BIC,
g-prior, hyper-g) give approximately equal support to the most prominent covariates,
while for the remaining ones the posterior inclusion probabilities are lower under the
PCEP.

Finally, we have compared the split-half out-of-sample predictive performance of the
MAP models and the full model using RMSE. All models achieved similar predictive
performance with difference not large enough to infer in favor of the superiority of one
model (and therefore of a method). Since the model indicated as MAP by PCEP was
more parsimonious, we claim that for this example PCEP achieves similar predictive

Table 1: Posterior marginal inclusion probabilities for the Crime data

Variables PCEP BIC Zellner’s Hyper-g prior

(log scale) g-prior (v =13)
X1 Percentage of males aged 14-24 0.828  0.909 0.850 0.843
X9 Indicator variable for a Southern state 0.193 0.229 0.231 0.295
X3 Mean years of schooling 0.974  0.992 0.978 0.967
X4 Police expenditure in 1960 0.664  0.687 0.665 0.662
X5 Police expenditure in 1959 0.402 0.404 0.422 0.465
Xg Labour force participation rate 0.120 0.161 0.157 0.226
X7 Number of males per 1000 females 0.124 0.168 0.160 0.228
Xg State population 0.287  0.359 0.330 0.385
X9 Number of non-whites per 1000 people 0.632 0.776 0.679 0.686
X10 Unemployment rate of urban males 14-24  0.165  0.226 0.208 0.272
X11 Unemployment rate of urban males 35-39  0.558  0.696 0.600 0.608
X192 Gross domestic product per head 0.256  0.363 0.312 0.377
X13 Income inequality 0.997 0.999 0.997 0.995
X14 Probability of imprisonment 0.872 0.946 0.896 0.889
X15 Average time served in state prisons 0.278  0.409 0.333 0.382




performance using a lower number of covariates.

4 Discussion

The PCEP prior for normal regression models is a conjugate normal-inverse-gamma
prior, resulting in a variable selection procedure with similar large sample properties to
BIC, supporting more parsimonious models than the approach using g-prior or hyper-g
prior. For the rest of the GLMs more advanced MCMC methods and/or Laplace based
approximating techniques will be implemented. Further extension of the method using
a hyperprior on ¢ will be also investigated in the future.
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