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Abstract

Complex, biologically-inspired tranmission models for “micro-simulation”—the
stochastic, computational realization of disease dynamics at the individual level
within a mock human population—are emerging as a key tool in the field of malaria
epidemiology. However, the long run times and high dimensionality of the param-
eter spaces for such models—ranging from ∼20 to 200 inputs plus a theoretically
infinite-dimensional functional input profile of biting rate seasonality—pose sub-
stantial challenges for posterior inference via existing algorithms for Approximate
Bayesian Computation (e.g. rejection ABC, SMC ABC, MCMC ABC). In this talk
I will describe my ongoing work towards principled, yet efficient, posterior inference
from these models via a fusion of ABC Indirect Inference and functional regression-
based model emulation.
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1 Introduction

As a World Health Organisation “Collaborating Centre in Geospatial Disease Modelling”
the Malaria Atlas Project1 at the University of Oxford aims to produce accurate esti-
mates of the global malaria burden, its geospatial distribution, and temporal trends.
Crucial to our estimation framework is a robust model of the relationship between the
parasite prevalence rate and the incidence of clinical disease within a community; for
which, in the case of the Plasmodium falciparum parasite, both disease transmission
theory and empirical observations indicate a complex, non-linear relationship and age-
dependence owing to the effects of exposure-driven immunity [7], which in turn depends
on a combination of the historical mean EIR (Entomological Innoculation Rate) and its
seasonality profile [8].

Mathematical modelling of the disease transmission process within a population has
a long history of success in the study of malaria (cf. the famous Ross-Macdonald mod-
els [9]), and is currently the focus of multiple ongoing efforts in the realm of burden
estimation. State-of-the-art “micro-simulations” following mock populations of humans

1URL: http://www.map.ox.ac.uk
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and multiple vector species allow for highly detailed simulations of the infection and
treatment process, from which predictions of the prevalence–incidence relationship can
be compiled. Although a vast body of past research into the mechanistics of the Pf.
malaria parasite and the immunological responses to infection within individuals is avail-
able to inform some elements of these models, many key transmission parameters require
further constraint against contemporary observational datasets [10]. Owing to the long
computational run-times required to bring these “micro-simulations” to a steady state
and extract mock observations, past studies have had to settle for maximum likelihood
estimates under ad hoc approximations to the unknown likelihood function under the
assumption of zero seasonality [11].

In this talk I will describe my work towards exploration of the full posterior of
three contemporary “micro-simulation” models of malaria transmission via a fusion of
functional regression-based model emulation and Approximate Bayesian Computation.

2 ABC-II with Functional Regression-based Model Emu-
lation

For the purpose of ensemble forecasting we aim to average over predictions of the
prevalence–incidence relationship from three popular contemporary codes for malaria
“micro-simulation”: the Griffin et al. (2014) model [6] (∼20 free parameters), OpenMalaria
[10] (up to ∼50 free parameters), and EMOD DTK [3] (up to ∼200 free parameters) con-
strained against a benchmark observational dataset compiled from a set of field studies
chosen to ensure identifiability of at least the OpenMalaria parameters [11]. The Griffin
et al. (2014) model has the fewest parameters and the fastest run time, owing in part to
the existence of a corresponding steady-state solution that can be used for initialization,
and is therefore the focus of our methodological validation. However, the EMOD DTK
has never before been fitted to observations and is thus the key scientific target of our
analysis.

We build upon previous efforts to fit the OpenMalaria model in which maximum
likelihood fitting was conducted under an ad hoc approximation to the true likelihood
function under the assumption of no seasonality by first connecting the full posterior
inference challenge to the framework of ABC Indirect Inference (II) [5, 2]. We then
show how the parameters of the II model can be estimated to adequate accuracy, and
at much greater computational efficiency, using far smaller mock populations than the
original analysis; and thus how a large suite of small population simulations can be used
to train a functional regression-based [4, 1] model emulator able to provide an effective
proxy for use in ABC-II.

The age-structured prevalence-incidence relationships so derived have been combined
with our latest geospatial prevalence models to produce the most up-to-date estimate of
the clincal malaria burden across the African continent.
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