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Abstract

This paper considers Bayesian inference for the p-th quantile regression models
for censored and binary response variables with an endogenous variable. We intro-
duce a regression model of the endogenous regressor on the exogenous variables such
that thte α-th quantile of the error term is zero. Then the residual of this regression
model is included in the p-th quantile regression model as control function such that
the corrected error term has zero p-th quantile. The resulting hierarchical model
is estimated using the Gibbs sampler. Since the choice of α has an impact on the
estimates, we also estimate it along with other parameters. The proposed models
are demonstrated using the simulated and real datasets.

Keywords: asymmetric Laplace distribution; control function; Gibbs sampler;
hierarchical model;

1 Introduction

Suppose that the response variables yi, i = 1, . . . , n are generated according to either
yi = {0, y∗i } when the observations are censored or yi = I(y∗i > 0) when the binary
responses are observed. Then consider the quantile regression model given by

y∗i = x′
iβp + δpdi + ϵi,

where xi is the vector of exogenous variables, di is the endogenous variable, βp and δp are
the coefficient parameters, and ϵi is the error term. When the covariate is endogenous,
the standard censored and binary quantile regression models ([4], [1]) would produce
biased estimates. Inference for quantile regression models for limited response variables
with endogenous variables has been considered to be challenging (e.g., [2]).

2 Approach

Following [3], we introduce the control function that corrects the error term such that
its p-th quantile is equal to zero:

y∗i = x′
iβp + δpdi + ηp(di − z′iγα) + ei, (1)

di = z′iγα + ui, (2)
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where ei and ui are the error terms, zi = (wi,x
′
i)
′, wi is an exogenous variable, and γα

is the coefficient parameter. It is assumed that u = d − z′γα is satisfied and quantile
independence of e on z conditional on u:

Qp(ϵ|d, z) = Qp(ϵ|u, z) = Qp(ϵ|u) = ηp(d− z′γα) (3)

where Qτ (·|·) denotes the τ -th conditional quantile. Also, the α-th quantile of u is
assumed to be zero for some α ∈ (0, 1).

Qα(u|z) = 0. (4)

The value of α is not known and its choice is arbitrary. In [3], it is mentioned that the
zero mean restriction E[u|z] = 0 can be used instead. However, since the choice of α is a
part of model specification and can have an impact on the conclusion on endogeneity of
d, we treat it as a parameter. Assuming that e and u independently follow asymmetric
Laplace distributions respectively with shape parameters p and α, the parameters are
estimated using the Gibbs sampler.

3 Simulation

We generated n = 500 observations from

y∗i = 0 + 2x1i + 2x2i + 2x3i + di + vi,

di = 1 + wi + x1i + x2i + x3i + ui,

where

x1i, x2i, x3i, wi ∼ N(0, 1),

vi ∼ N(ui, 1),

ui ∼ exp(0.5wi)χ
2
2.

We replicated the data 100 times. For the censored data, we consider the standard
Bayesian censored quantile regression model (CQR), the proposed model with restriction
(4) (IVCQR A), the model with (4) but α = p (IVCQR P), and the model with the zero
mean restriction (IVCQR M). We denote the models for the binary data accordingly
by BQR, IVBQR A, IVBQR P, and IVBQR M. For the binary data, the scale of the
coefficient vector β̃p = (β′

p, δp) is normalised such that the coefficient for x1i equal to 2.

Figure 1 show the bias and RMSE for the posterior means of β̃p for p = 0.25, 0.5,
0.75 for the case of the censored data. As expected, CQR produced the largest bias and
RMSE. In contrast, the bias and RMSE for the proposed IVCQR is the smallest. Since
the distribution of u is highly skewed to the right (the average of the posterior mean of α
is 0.065), (4) is not satisfied for IVCQR P and IVCQR M and the resulting performance
for them was not as good as that for IVCQR A. Fig 2 shows a similar result for the case
of the binary response data.

4 Conclusion

The proposed models are useful approach to quantile regression analysis with endo-
geonous variables. It would be interesting to extend the present model to incorporate
endogenous binary variables as in the context of endogenous switching.
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Figure 1: Bias and RMSE for censored data
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Figure 2: Bias and RMSE for binary data
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