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Abstract

Bayesian nonparametric marginal methods typically yield point estimates in the
form of posterior expectations. Though very useful and easy to implement, these
methods may suffer from some limitations if used to estimate non–linear functionals
of posterior distributions, such as credible intervals. This is particularly relevant in
survival analysis where various estimators for the same survival function can lead
to different estimates. The main goal of the paper summarized in this extended
abstract is to develop a novel methodology for hazard mixture models in order to
draw approximate inference on survival functions that is not limited to the posterior
mean.
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In this extended abstract, we announce results which will be extensively presented
and proved in Arbel et al. (2014). We briefly review in Section 1 hazard mixture mod-
els, then provide in Section 2 our main result on the characterization of the posterior
moments of the survival function, and finally show in Section 3 how such a piece of
information can be used in order to carry out Bayesian inference not restricted to the
posterior mean.
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1 Introduction

A well–known nonparametric prior for the hazard rate function h̃ within multiplicative
intensity models used in survival analysis arises as a mixture of completely random
measures (CRMs). If k( · ; · ) is a transition kernel on R+ × Y, a prior for h̃ is the
distribution of the random hazard rate (RHR)

h̃(t) =

∫
Y
k(t; y)µ̃(dy), (1)

where µ̃ is a CRM on Y. We observe that, if limt→∞
∫ t
0 h̃(s)ds =∞ with probability 1,

then one can adopt the following model

Xi | P̃
iid∼ P̃

P̃ (( · ,∞))
d
= exp

(
−
∫ ·
0
h̃(s) ds

) (2)

for a sequence of (possibly censored) survival data X = (Xi)1≤i≤n. This means that h̃
in (1) defines a random survival function

t 7→ S̃(t) = exp(−
∫ t

0
h̃(s)ds).

In this setting, Dykstra and Laud (1981) characterize the posterior distribution of
the so-called extended gamma process: this is obtained when µ̃ is a gamma CRM and
k(t; y) = 1(0,t](y)β(y) for some positive right-continuous function β : R+ → R+. The
same kind of result is proved in Lo and Weng (1989) for weighted gamma processes
corresponding to RHRs obtained when µ̃ is still a gamma CRM and k( · ; · ) is an arbitrary
kernel. Finally, a posterior characterization has been derived by James (2005) for any
CRM µ̃ and kernel k( · ; · ).

2 Hazard mixture models and moment approximations

A useful augmentation suggests introducing latent random variables Y = (Y1, . . . , Yn)
such that, building upon the posterior characterization derived by James (2005), we can
derive expressions for the posterior moments of the random variable S̃(t), conditionally
on X and Y . To this end, define Kx(y) =

∫ x
0 k(s; y)ds and KX(y) =

∑n
i=1KXi(y). Also,

the almost sure discreteness of µ̃ implies there might be ties among the Yi’s with positive
probability. Therefore, we denote the distinct values among Y with (Y ∗1 , . . . , Y

∗
k ), where

k ≤ n, and, for any j = 1, . . . , k, we define Cj =
{
l : Yl = Y ∗j

}
and nj = #Cj , the

cardinality of Cj .

Proposition 1 Denote by ν(ds, dy) = ρ(s) ds c P0(dy) the Lévy intensity of µ̃. Then
for every t > 0 and r > 0,

E[S̃r(t) |X,Y ] = exp

{
−
∫
R+×Y

(
1− e−rKt(y)s

)
e−KX(y)sν(ds, dy)

}
×

k∏
j=1

1

Bj

∫
R+

exp
{
−s
(
rKt(Y

∗
j ) +KX(Y ∗j )

)}
snjρ(s)ds, (3)

where Bj =
∫
R+ s

nj exp
{
−sKX(Y ∗j )

}
ρ(s)ds, for j = 1, . . . , k.
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3 Bayesian inference

By an extensive simulation study, we show that the posterior distribution of S̃(t), for
each t > 0, can be approximated with the N first posterior moments estimated in
Proposition 1 with a precision increasing with N . This allows us to devise an algorithm
for carrying out full Bayesian inference on survival data. This is applied on a dataset
involving leukemia remission times (see for example Cox, 1972).

Particular attention in the illustration is dedicated to posterior mean, posterior me-
dian, posterior mode and highest posterior density (HPD) intervals, plotted in Figure 1.
However, any functional of interest of the posterior distribution of S̃(t) can be estimated
by the proposed algorithm. By inspecting the left part of Figure 1, it is apparent that,
for large values of t, posterior mean, median and mode show significantly different be-
haviors, with posterior mean being more optimistic than posterior median and mode. It
is worth stressing that such differences, while very meaningful for clinicians, could not
be captured by marginal methods for which only the posterior mean would be available.
Furthermore, marginal methods generally underestimate the uncertainty associated to
posterior estimates. This is clearly shown in the right part of Figure 1 where we have
compared the estimated 95% HPD intervals for S̃(t) and the intervals corresponding to
the marginal method.
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Figure 1: Left: posterior mean (solid line), median (dashed line), mode (point dashed line), 95% highest
posterior density credible intervals (thick dashed line), and Kaplan-Meier estimate (red) for S̃(t). Right:
95% highest posterior density credible interval (dashed black line) and 95% marginal credible interval
(dashed red line) for S̃(t).
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